MATH 309: Homework #4

Due on: November 20, 2015

Problem 1 FEven and Odd Functions

Prove that any function f(x) may be expressed as a sum of two functions f(z) =
g(x) + h(x) with g(z) even and h(z) odd. [Hint: consider f(z)+ f(—=x)].

Problem 2 FEven and Odd Functions

Prove that the derivative of an even function is odd and that the derivative of an odd
function is even.

Problem 3 Sine Series

Consider the function
0, O<z<mw

fle)=<¢ 1, m<z<2rm
2, 2n<x <37

(a) Scketch a graph of f(x)
(b) By reflecting f appropriately, express f as a sine series.

(c) Plot three different partial sums of the sine series, clearly indicating the partial
sums being plotted.

(d) Sketch a graph of the function to which the sine series converges for three periods.



Problem 7 2

Problem 4 Cosine Series

Consider the function
r,0<zx<m

f(.r):{ 0,m <z <21
(a) Scketch a graph of f(x)

(b) By reflecting f appropriately, express f as a cosine series.

(c) Plot three different partial sums of the cosine series, clearly indicating the partial
sums being plotted.

(d) Sketch a graph of the function to which the cosine series converges for three
periods.

Problem 5 Heat Equation 1

Find the solution of the heat conduction problem

100Uz, =ug, O<z <1, t>0
uw(0,t) =u(l,£) =0, t >0

u(z,0) = sin(27z) — sin(brz)

Problem 6 Heat Equation 2

Find the solution of the heat conduction problem

Upe = 4duy, O0< <2, t>0
u(0,t) =u(2,t) =0, t >0
u(z,0) = 2sin(rx/2) — sin(mx) + 4sin(27x)

Problem 7 Schrodinger Equation

In quantum mechanics, the position of a point particle in space is not certain — it’s
described by a probability distribution. The probability distribution of the position of
the particle is |1 (z, t)|?, where ¢ (z, t) is the wave function of the particle. (Note: the
wave function ¢(x,t) can be complex-valued!!). The one-dimensional, time-dependent
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Problem 7 3

Schrodinger equation, describing the wave function ¢ (x,t) of a particle of mass m
interacting with a potential v(z) is given by

2

(1) = e, 1) + 0(a ) (1

where £ is some universal constant. The potential v(x) can be imagined as a function
describing the particles interaction with whatever “stuft” is in the space surrounding
the particle, eg. walls, external forces, etc.

(a)

(b)

Use separation of variables to replace this partial differential equation with a pair
of two ordinary differential equations

If v(x) is a potential corresponding to an “infinite square well”:

() = 0, —-1l<z<l1
R N

Then ¢ (x,t) must be zero whenever |z| > 1 and therefore i(z,t) is the wave
function of a particle trapped in a one-dimensional box! In other words, this
potential describes a particle surrounded by impermeable walls. In this case,
Schrédinger’s equation reduces to

h2
iy (x,t) = —%wm(x,t), —1l<z<1,t>0

Y(=1,t) =9(1,t) =0, t >0

Suppose that initially the wave function is known to be
3 . 4 .
P(x,0) = : sin(mx) + R sin(37x).

Determine ¢ (z,t) for all t > 0.

Since |1 (x,t)|? is the probability distribution of the particle’s position at time t,
the probability that the particle is somewhere in the box between ¢; and /5 is
given by

12
P(l; < pos < f3) = / (. ) [2da.

0y

Show that the probability P(—1 < pos < 1) that the particle is between —1 and
1 is always 1 (in other words, the particle is always in the box!).

What is the probability P(—1 < pos < 0) that the particle is in the first half of
the box at any given time?

MATH 309 HW # 4



