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Plan for today:

@ Direction Fields

@ Complex Eigenvalues
Next time:

@ Repeated Eigenvalues
@ Matrix Exponentials
@ Fundamental Matrix
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Outline

0 Direction Fields
@ Basics
@ Direction Fields and Solutions

9 Complex Eigenvalues
@ Slope Fields for Complex Eigenvalues
@ General Solution

W.R. Casper Math 309 Lecture 5



Direction Fields Basics
Direction Fields and Solutions

Direction Fields

Consider a 2 x 2 system

yi=ay +by,
Y2 = cy1 +dye

@ solving this system has both algebraic and geometric
interpretations

@ we can draw a “picture" of the equation in the phase plane
@ here by phase plane we mean the y1, y» plane
@ strategy: at each point (y1, y») draw a dash in direction of

vector
<y1’>:<ay1+by2)
A cy1+dy2 )
@ result is called a direction field
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Direction Fields Basics
Direction Fields and Solutions

Solutions as Tangent Curves

@ think of slope field as current in the ocean

@ solutions to the system of equation are traced out by path
of a (slow) boat

@ the path a boat takes traces a curve whose tangent lines
always point in direction of local slope field
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Direction Fields Basics
Direction Fields and Solutions

Observations:

@ regardless of the initial position, the “boat" moves away
from the origin

@ unless if the boat starts at the origin, in which case it stays
there

@ for this reason, in this case we call the origin an
exponentially unstable node

@ note that there are also two straight paths the boat can
take — corresponding to eigenvectors!
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Direction Fields Basics
Direction Fields and Solutions

Straight Paths from Eigenvectors

Direction Field for 2’ =1.0z +1.0y, y =0.0z +2.0y
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Direction Fields Basics
Direction Fields and Solutions

Saddle Point or Node

@ the origin does not have to be an exponentially unstable
node

@ it may also be a exponentially stable node or a saddle
point

@ for an exponentially stable node, solutions tend toward the
origin

@ for a saddle point, solutions tend both toward and away
from the origin, based on the initial condition

e for the equation y’(t) = Ay(t), the behavior of solutions
around the origin depends on the eigenvalues of A
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Basics

Direction Fields

Direction Fields and Solutions

©
Xo.
s
Z
Qo
e
i
w
=
o
c
@
C
S,
o)
X
L

Y =10z +—2.0y

Direction Field for 2’ =—2.0x +1.0y,

NNN VTSI
NN N A AAAAASASAS
<N\ LSS ST
=<\ 1§/ S
-~ N[ s
e S S S S s S
B d e S
s s SS ] — -
RSN I S
SSSSS VN S = =
AV B EANANENEN
o foiforfofotfo oot XN
VAV AN R B NN

1.0

0.5

0.0

-0.5

-1.0

0
)
2
|53
@
-
@
=}
@
=
©
=

W.R. Casper




Direction Fields and Solutions
=4.0z +1.0y
Math 309 Lecture 5
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Direction Fields Basics
Direction Fields and Solutions

Behavior of the Origin

@ the origin is always a fixed point of y'(t) = Ay(t)
@ eg. y(t) = 0 is a constant solution of the equation

@ how other solutions behave is based on the eigenvalues of
A:

(a) if both eigenvalues of A are real and positive, then origin is
an exponentially unstable node

(b) if both eigenvalues of A are real and negative, then origin is
an exponentially stable node

(c) if both eigenvalues of A are mixed sign, then origin is a
saddle point

(d) what about when the eigenvalues of A are complex?
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

Spirally Slope Fields

@ slope fields for complex eigenvalues are characterized by

spiral patterns
@ for example:
([ —1/2 1
A= < -1 —1/2 >
@ characteristic polynomial is
pa(x) = det(A — xI) = x? + x + g

@ eigenvalues of Aare —(1/2) £
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

Complex Eigenvalues: —(1/2) £

Direction Field for 2'=—0.5z +1.0y, ¥ =—1.0z +—0.5y
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

Behavior of the Origin

@ suppose that A has complex eigenvalues

@ they come in conjugate pairs! \y = a+ib, \o =a—ib

@ the origin is always a fixed point of y'(t) = Ay(t)

@ whether our ship moves toward or away depends on value
of a

(a) if ais positive, move away
(b) if ais negative, move toward
(c) if ais zero, circle around
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

Complex Eigenvalues: (1/2) £
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

Complex Eigenvalues: £/

Direction Field for 2'=0.0z +1.0y, ¥ =—1.0z +0.0y
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

What about General Solutions?

How do we find the general solution in the case that A has
complex eigenvalues?

@ use Euler’s definition!
e’ = cos(#) + isin(8)

@ we can then take our eigenvalue solutions and write them
as linear combinations of real solutions
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

Find the general solution of the equation

SN pe (11

@ first we find the eigenvalues: —(1/2) £+ i

@ then we find the corresponding eigenspaces:

1 1
E_(1/2)+i = span { ( i > } E_(1/2)-i = span { < _ ) }
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

@ from this we get two (complex) solutions

i) = ( 1 )e(—1/2+i)t Jolt) = < 1 >e(_1/2—i)t

i —i

@ by the superposition principal we get the family of
solutions:

- 1 —1/24i 1 —t/2—i
y(,):01( ! )e( 1/2+/)r+02( i )e( 1/2-it

- cos(t) + isin(t) — cos(t) — isin(t)
=cre” /2 ( icos(t) — sin(t) ) +oe !/ ( —icos(t) — sin(t) )

i(cy — cp)cos(t) — (c1 + cp)sin(t)

et/ ( by cos(t) + by sin(t) )
- by cos(t) — by sin(t)

= b197[/2( —Cos?rs?t) ) +bpe !/ ( :(I:»r;((i;)) )

_ et/ ( (c1 + c2) cos(t) + i(cy — c)sin(t) )
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Slope Fields for Complex Eigenvalues
Complex Eigenvalues General Solution

Summary!

What we did today:
@ Direction Fields
@ Complex Eigenvalues
Plan for next time:
@ Fundamental matrices
@ Matrix exponentials
@ Repeated eigenvalues
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