
Methods for Solving Nonlinear Systems of Equations

Wanjie Zhang

1135940

University of Washington

August 12, 2013

Abstract

Nonlinear systems of equations are very important in many aspects, for instance, in chem-
istry, physics and economy. In this project, several methods of solving nonlinear systems would
be introduced. The nonlinear systems problems are usually hard to solve. Methods are going
to be used to simplify the nonlinear systems, including local linearization. Also, the iterative
methods would be used to solve nonlinear problems,including Newton’s method, SOR and etc..
Classic problems would be raised and solved after the introduction of each method. In comparing
efficiency of iterative methods, the rate of convergence (ROC) would be introduced.

1 Introduction

Solving of nonlinear systems of equation is a very important part in mathematic and has
a wide range of application in various aspects, including chemistry, physics and economy.
Some of nonlinear problems could be transformed into a linear, however some could not.
Therefore, finding methods to solve nonlinear systems is crucial. The main aspects about
nonlinear systems would be overviewed. Some definition of terms would be mentioned.
The local linearization of nonlinear systems would be introduced in this project. For some
problems that cannot be linearized, iterative methods would be used and discussed.

2 Background

2.1 Problem Overview

Let F : Rn → Rn be a nonlinear mapping from the n-dimensional real linear space Rn into
itself. Our interest is in the method for the compitation of solutions of the systems of n
equations in n variables.

Fx = 0

We need to consider following problem in solving the equation above:
(a) Do solutions exist in a specified subset of the domain of F?
(b) How many solutions are there in such a set?
(c) How do the solutions vary under small changes to the problems?
After discussing these simplified methods, the iterative methods would be discussed.

2.2 Definition of terms used in Iterative Methods

2.2.1 Q-factor and R-factor

Let’s define the Q-factor and R-factor first First we need to define the terms I will use in
iterative methods; Q Cfactor and R-factor.

DEFINITION for a sequence {xk} ⊂ Rn with limit x∗ ∈ Rn and any p ∈ [1,∞)

Rp{xk} =


lim sup
k→∞

‖xk − x∗‖ 1
k , if p =1;

lim sup
k→∞

‖xk − x∗‖
1

pk , if p ¿1.

are the root-convergence factors (R-factors) of {xk}
Moreover, Rp(J, x

∗) = sup{Rp{xk} : {xk} ∈ C(J, x∗)}

1

Similarly, we have:
DEFINITION for a sequence {xk} ⊂ Rnwith limit x∗ ∈ Rn and any p ∈ [1,∞)

Qp{xk} =


lim sup
k→∞

‖xk+1−xk‖
‖xk−x∗‖p , if xk 6= x∗∀k ≥ k0;

0, if xk 6= x∗∀k = k0;
∞, otherwise

are the quotient-convergence factors (Q-factors) of {xk} with respect to the particular norm.
Moreover,

Qp(J, x
∗) = sup{Rp{xk} : {xk} ∈ C(J, x∗)}

are the Q-factors of an iterative process J with limit x∗

The Q- and R- factors can be used to compare the rate of convergence of different iterative
processes.A comparison of two iterative processes, J1 and J2 , in terms of the R-measure
proceeds as follows.
First compare the R-orders oi = OR(Ji, x

∗), i = 1, 2; the process with the larger R-order is
R-faster than the other one. For ol = o2 = p compare the R-factors γi = Rp(Ji, x

∗), i = 1,2;
if one of these numbers is smaller, the corresponding process is R-faster. We do the similar
thing for Q-measure.

2.2.2 Rate of Convergence

General DEFINITION for rate of convergence:
A sequence xk, k = 0, 1, 1...inRn converges linearly to x∗ ∈ Rn if

∃L < 1 : ‖xk+1 − x∗‖ ≤ L‖xk − x∗‖,∀k ∈ N0

3 Linearization

3.1 Local linearization of Nonlinear Systems

For a nonlinear state-space systems of the form

x = f(x, u)

y = h(x, u)

the locally linearized models is given by

x̃ = Ax̃+Bũ

ỹ = Cx̃+Dũ

2

Then we have:

A =
∂f

∂x
|n

B =
∂f

∂u
|n

C =
∂h

∂x
|n

D =
∂h

∂u
|n

where the Jacobian ∂g
∂t

for a vector of functions

g(t) =


g1(t1, t2, ..., tn)
g2(t1, t2, ..., tn)

...
gn(t1, t2, ..., tn)


in variables t1, t2, ..., tn is

∂g
∂t

=


∂g1
∂t2

∂g1
∂t1

... ∂g1
∂tn

∂g2
∂t2

∂g2
∂t1

... ∂g2
∂tn

...
...

...
...

∂gm
∂t2

∂gm
∂t1

... ∂gm
∂tn


The function Linearize attempts to find such an approximation.
Linearize [f, {x, xn}, {u, un}]
find a linearized state-space approximation to the function f in the state variable x and
input variable u in the vicinity of the operating point xn, un

Linearize [f, {{x1, x1n}, {x2, x2n}, ...}, {{u1, u1n, {u2, u2n}, ...}]
find a linearized state-space approximation to the function f in the state variable x and
input variable u in the vicinity of the operating point xin, uin

Linearize [f, h, {{x1, x1n}, {x2, x2n}, ...}, {{u1, u1n, {u2, u2n}, ...}]
find a linearized state-space approximation to the vectors f and h

3.2 Linearization Concepts

Let xk ∈ E be a current iterate when solving Fx = 0. the idea of a linearization method is
to construct an affine approximation

Lk : Rn → Rn, Lkx = Ak(x− xk) + Fxk, Ak ∈ L(Rn)

that agrees with F at xk, and to use a solution of Lkx = 0 as the next iterate. We shall
not consider here the situation when some or all of the matrices are allowed to be singular,
and assume always that all Ak , k ≥ 0 are invertible. Then the resulting (nonsingular)
linearization method becomes

3

xk+1 = xk − A−1k Fxk, k = 0, 1....

The simplest linearization methods are the chord methods where all matrices Ak are identi-
cal. In other words, chord methods have the form:

xk+1 = xk − A−1k Fxk, k = 0, 1....

A special case of the Picard iteration arises if F has the from Fx = Bx−Gx with nonsingular
B ∈ L(Rn) and a nonlinear mapping G:E ⊂ Rn → Rn. Here the chord method with the
choice A=B becomes:

xk+1 = A−1Gxk, k = 0, 1....

which, for B=I; that is , for the fixed-point equation x=Gx, is the classical method of suc-
cessive approximations

xk+1 = Gxk, k = 0, 1....

for the convergence of the simple methods of the form we also have the contraction-mapping
theorem, which in our setting may be phrased as follows
THEOREM Suppose that G:E ⊂ Rn → Rn maps a closed set C ⊂ E into itself and that
there exists a constant α ∈ (0, 1) such that

‖Gy −Gx‖ ≤ α‖y − 1‖,∀x, y ∈ C
Then G has a unique fixed point x∗ = Gx∗ in C and for any x0 ∈ C the iterates converge to
x∗ and satisfy

‖xk − x∗‖ ≤ αk

a− α
‖x1 − x0‖, k ≥ 0

Proof. Any two fixed points x∗, y∗ ∈ C satisfy

‖y∗ − x∗‖ = ‖Gy∗ −Gx∗‖ ≤ α‖y∗ − x∗‖

which, because α < 1, implies that y∗ = x∗. Since GC⊂ C, the sequence {xk} of xk+1 = Gxk

is well defined and remains in C. For any k,m> 0we obtain

‖xk+m+1 − xk‖ ≤
m∑
j=0

‖xh+j+1 − xk+j‖

≤
m∑
j=0

αj‖xk+1 − xk‖ ≤ 1

1− α
‖xk+1 − xk‖

≤ αk

1− α
‖x1 − x0‖

which shows that {xk} is a cauchy sequence. Thus limk→∞x
k = x∗ exists and the closedness

of C implies that x∗ ∈ C From ‖xk−x∗‖ ≤ αk

a−α‖x
1−x0‖, k ≥ 0, it follows that G is continuous

whence xk+1 = A−1Gxk, k = 0, 1.... gives x∗ = Gx∗. The error estimate ‖xk − x∗‖ ≤
αk

a−α‖x
1 − x0‖, k ≥ 0, is a sequence od the above proof for m→∞

4

4 Iterative Methods

4.1 Newton Methods

4.1.1 Form of Newton Method

At first, I will give a general idea about Newton Method
Lets suppose that we want to approximate the solution to f(x)=0 and lets also suppose that
we have somehow found an initial approximation to this solution say, x0. This initial ap-
proximation is probably not all that good and so wed like to find a better approximation.
This is easy enough to do. First we will get the tangent line to f(x) at x0.
Now, take a look at the graph below.

Figure 1: General Newton Method

The blue line (if youre reading this in color anyway) is the tangent line at x0. We can see
that this line will cross the x-axis much closer to the actual solution to the equation than
x0 does. Lets call this point where the tangent at x0 crosses the x-axis x1 and well use this
point as our new approximation to the solution.
So, how do we find this point? Well we know its coordinates,(x1,0) , and we know that its
on the tangent line so plug this point into the tangent line and solve for x1 as follows,

0 = f(x0) + f ′(x0)(x1 − x0)

x1 − x0 = − f(x0)

f ′(x0)

x1 = x0 −
f(x0)

f ′(x0)

So, we can find the new approximation provided the derivative isnt zero at the original
approximation. Now we repeat the whole process to find an even better approximation.
We form up the tangent line to f(x) at x1 and use its root, which well call x2, as a new
approximation to the actual solution. If we do this we will arrive at the following formula.

x2 = x1 −
f(x1)

f ′(x1)

5

This point is also shown on the graph above and we can see from this graph that if we
continue following this process will get a sequence of numbers that are getting very close the
actual solution. This process is called Newtons Method.
Here is the general Newtons Method

We have:

N : xk+1 = xk −D(xk)−1Fxk, k = 0, 1, ...

The execution of Newton methods requires the following:
(a) evaluation of the n components of Fxk

(b) evaluation of the n2 elements of Ak
(c) numerical solution of the n× n linear system
(d) work needed to handle the memory set Mk+1

4.1.2 Convergence of Newton Methods

Next,we are going to check whether Newton Method is convergent or not and how fast would
this method convergence. With the formulation we draw above, we can expand function F
about x∗

F (x) = F ∗ + J∗(x− x∗) +O((x− x∗)2)

F (x) = J∗(e) +O[e2]

gives:
O[e2] = J∗(ei+1)

Then we can see the convergence is quadratic.

4.1.3 Example in Chemistry

ex: chemical reaction:

2A+B ⇔ C

A+D ⇔ C

a0, b0, d0: initial concentrations (moles/liter) in chemical reactor(known)
c1, c2: equilibrium concentrations of C produced by each reaction(unknown)
k1, k2:equilibrium reaction constants(known)
These variables are related by the las of mass action.

c1 + c2
(a0 − 2c1 − c2)2(b0 − c1)

= k1

c1 + c2
(a0 − 2c1 − c2)(d0 − c2)

= k2

6

We used the knowledge we have learned about Newton’s Method:
Given(xn, yn), we want to find (xn+1, yn+1)

0 = f(xn+1, yn+1) = f(xn, yn) +
∂f

∂x
(xn, yn)(xn+1 − xn) +

∂f

∂y
(xn, yn)(yn+1 − yn)

0 = g(xn+1, yn+1) = f(xn, yn) +
∂g

∂x
(xn, yn)(xn+1 − xn) +

∂g

∂y
(xn, yn)(yn+1 − yn)

Then we have:(
fx fy
gx gy

)
|xn,yn ·

(
xn+1 − xn
yn+1 − yn

)
=

(
−f(xn, yn)
−g(xn, yn)

)

With the equation mentioned above, we can easily solve the chemical problem with the
Newton’s method.

4.1.4 Form of Matlab code using Newton methods

Figure 2: Newton Method

4.2 SOR

We are going to introduce a method that would generally e most efficient in iterative method.
According to our experience in solving the linear system, the SOR method choose the most

7

efficient ωk to produce the iterative step. With this certain ωk, the SOR would converge
much faster than Jocobian and GS method. Next, we are going to apply SOR to nonlinear
system.

We are going to focus on SOR–Steffensen-Newton method to have a basic expression of
SOR method.
To solve F (x) = 0 for F = (F1, F2, ...Fn)t is defined by solving the following equation for xt

Ft(x
k+1
1 , ...xk+1

t−1 , xt, x
k
t+1, ...x

k
n) = 0

Then we have:

xl = ynl −
Ft(x

k+1
1 , ...xk+1

t−1 , y
n
l , x

k
t+1, ...x

k
n)

Ftt(x
k+1
1 , ...xk+1

t−1 , y
n
l , x

k
t+1, ...x

k
n)

where

ynl = xkl −
Fl(x

k,l−1)
Fl(xk,l−1+Fl(xk,l−1)el)−Fl(xk,l−1)

Fl(xk,l−1)

Finally we have:

xk+1
l = ynl + ω(xl − ynl)

And with the limited time, I would directly use the conclusion from From Linear to Non-
linear Iterative Methods(M. N. Vrahatis, G.D. Magoulas, 2002) that the SOR-SN method is
convergent.
Also, with reference to the SOR- Steffensen-Newton Method to Solve Systems of Nonlinear
Equations(M. T. Darvishi , Norollah Darvishi,2012), the SOR-SN method is were better
in number of iterations when comparing to SOR-Newton, SOR-Steffensen and SOR-Secant
methods.

4.3 Secant Type

As an extension of one-dimensional Secant Methods, we could represent the form of Secant
Method in higher dimensions as:

Lkx = Akx+ ak, Ak ∈ L(Rn), ak ∈ Rn

THEOREM For given xk,j, yk,j ∈ Rn, j = 0, 1, ..., n, there exists a unique function such
that Lkx

k,j = yk,j, j = 0, 1, ..., n, if and only if the {xk,j} are in general position. Moreover,
Ak is nonsingular if and only if the {yk,j} are in general position.

With the similar step in one dimension, we are going to represent xk,j in the following
form:

xk,j = xk +Hke
j

8

where

Hk = (xk,1 − xk, ..., xk,n − xk)

With similar substitution in Newton Methods, we have:

xk+1 = xk − J(xk, Hk)
−1Fxk, k = 0, 1....

where J(x,H) = ΓH−1,Γ = (F (x+He1)− Fx, ..., F (x+Hen)− Fx)
We called the new form of xk+1 a general secant method. Usually, the secant method should
be conducting in the following way:

input: {k, xk,Mk}
construct xk,1, ..., xk,n

evaluate Fxk, Fxk,1, ..., Fxk,n

solve the following:

0 =
n∑
j=0

zjFx
k,j = ak + Ak

n∑
j=0

zjx
k,j,

n∑
j=0

zj = 1

if solver failed then return: fail
xk+1 = z0x

k +
∑n

j=1 zjx
k,j

return:{xk+1,Mk+1}

5 Future work

After learning all these method above, I have some basic understanding in how to solve
nonlinear systems. In future, if there are any chance for me to explore more on this topic, I
would choose to study Higher-Order Method.

5.1 Higher-Order Methods

In the linearization method the nonlinear function F is approximated near the kth iterat
xk by an mapping Lkx = Fxk + Ak(x − xk) and then a solution of Lkx = 0 is used as
xk+1. In future I would go to explore the higher-order method to make the iterative methods
converges much quicker.

6 Conclusion

With few weeks researching the topic of methods for solving the nonlinear systems of equa-
tions, I have learned some basic ways to solve nonlinear systems, which would be quite useful
in my further study of mathematics. In this project, with the knowledge I learned about
the nonlinear systems, I used matlab to programm some code to solve nonlinear systems of
equations with Newton Method. Due to the limited time and space, there are some methods
that I cannot expand in this project. However, I would continue my learning in nonlinear
systems.

9

