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Geophysical Length Scales

typical length scale of flow in the ocean: 15,000 km
typical ocean depth: 3 km
typical thickness of a sheet of paper: 0.0039 in

On a global scale the ocean is a paper-thin sheet on the
surface of a basketball.

we can model a patch of ocean as a shallow water
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The Shallow Water Equations

Shallow Water Equations

~ut + ~u · ∇~u = ~u × f ẑ − g∇η

ηt + (H + η)∇ · ~u + ~u · (∇η) = 0

η free surface height
H mean depth
~u the (horizontal) fluid velocity

(!!) Assumes H/L� 1 where L is length scale of interest
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Non-dimensional Form

Non-dimensional Shallow Water Equations

~ut + ~u · ∇~u =
1

Ro
~u × ẑ − 1

Ro
∇η

ηt +

(
Bu
Ro

+ η

)
∇ · ~u + ~u · (∇η) = 0

Ro = U/(fL)

Fr = U/
√

gH
Bu = (Ro/Fr)2 = (Ld/L)2 for Ld Rossby deformation radius
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Linearized Shallow Water

Linearizing around η = 0 and ~u = 0:

u = ũ(t)eikx x+iky y , v = ṽ(t)eikx x+iky y , η = η̃(t)eikx x+iky y ,

under which the linearized shallow water equations become
ũ

ṽ

η̃/
√

Bu


′

=
1

Ro


0 1 −

√
Buikx

−1 0 −
√

Buiky

−
√

Buikx −
√

Buiky 0




ũ

ṽ

η̃/
√

Bu

 .
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Slow Modes

Slow mode: 
ũ

ṽ

η̃

 ∝

−iky

ikx

1


note that u = −ηy and v = ηx

we will call this geostrophic balance
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Fast Modes

Fast mode: 
ũ

ṽ

η̃

 ∝

−iky − λRoikx

ikx − λRoiky

−k2Bu

eiλt

where here

λ = ± 1
Ro

√
Bu(k2

x + k2
y ) + 1.

divergent phenomena: sound waves
for Ro� 1, this limits simulation timesteps...
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Geostrophic Balance

Away from the Equator: Ro� 1
To leading order we have geostrophic balance

v = ηx and u = −ηy .

Flow is perpendicular to the pressure gradient!
Flow is divergence-free so no sound waves
In dimensional coordinates

v =
g
f
ηx and u = −g

f
ηy .
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Shallow Water for Ro� 1

Rossby number expansion:

~u = ~u0 + ~u1Ro +O(Ro2)

η = η0 + η1Ro +O(Ro2)

Geostrophic decomposition:

~ui = ~ui,g + ~ui,ag , where ~ui,g × ẑ = ∇ηi

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Water



Rotating Shallow Water
Instability Analysis

Analytic Methods for the Cosine Profile

Shallow Water Equations
Quasi-geostrophic model
Pseudospectral Techniques

The Quasi-geostrophic Model

Then to order 0 in Ro: ~u0,ag = ~0 and

(~u0,g)t + ~u0,g · ∇~u0,g = ~u1 × ẑ −∇η1.

(η0,g)t + Bu∇ · ~u1 = 0.

This simplifies to a closed equation(
1− ∆−1

Bu

)
(~u0,g)t + ~u0,g · ∇~u0,g = −∇p0,g ,

where p0,g is the geostrophic pressure

−∆p0,g = ∇ · (~u0,g · ∇~u0,g).
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Stream Function Formulation

The stream function ψ satisfies

~u0,g = ẑ ×∇ψ, and ∇× ~u0,g = −∆ψ.

Taking the curl of the QG-model and simplifying:

qt + J(ψ,q) = 0, where J(ψ,q) = ψxqy − ψyqx ,

q = ∆ψ − 1
Bu

ψ potential vorticity
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A Simple Example

Consider the KdV equation:

ut + uxxx = 6uux .

Pseudo-spectral technique:
do all products in physical space
do all spatial derivatives in spectral space

ut = F−1(ik3F(u)) + 6uF−1(ikF(u)).

Important: aliasing errors
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The Code

source code written in C
capable of solving multiple models

2 and 3-dim DNS
Boussinesq
shallow water and qg shallow water

capable of periodic and rigid lid boundary
uses P3DFFT for 2 or 3-dim fast Fourier transforms

allows pencil domain decomposition
scales well with thousands of processors

diagnostic calculation, file I/O, parallelization with OpenMPI
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The Evolutionary Picture

Presence of linear instabilities causes growth of certain
wave modes
In above, instabilities caused by interactions between
interfacial waves
The fastest growing mode will be dominant
Nonlinear advection term causes these to rotate/interact
Eventually transitions to turbulent regime (dipole pv)
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Questions

Energy flows from small scales to large scales (inverse
scattering)
Can we predict the number of vortices?
How does the number of vortices vary with Ro,Fr,Bu?
How does the picture change in the full shallow water
equations?
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Linearized QG

Consider a perturbation ψp from a background profile ψb:

qb
t + qp

t + J(ψb,qb) + J(ψb,qp) + J(ψp,qb) + J(ψp,qp) = 0,

Dropping nonlinear perturbation terms:

Linearized QG PV Equation

qp
t + J(ψb,qp) + J(ψp,qb) = 0
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Rayleigh Equation

Base state:
ψb = −

∫
ub(y)dy

Linearized QG PV:

qp
t + (qb)′ψp

x − (ψb)′qp
x = 0.

Substitute perturbed solution:

ψp(x , y , t) = eik(x−ct)f (y)

Rayleigh Equation:

f ′′(y)−
(

k2 +
ub(y)′′ − c/Bu

ub(y)− c

)
f (y) = 0.
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Background Profile

u(y)

L1

L2

L3

L4

Ly
y

−u u

Region 1

Region 2

Region 3

Region 4

Region 5
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Background Profile

ub(y) = −b cosh(y/
√

Bu), 0 ≤ y < L1

ub(y) = m sinh
(

y − Ly/4√
Bu

)
, L1 ≤ y < L2

ub(y) = b cosh
(

y − Ly/2√
Bu

)
), L2 ≤ y < L3

ub(y) = −m sinh
(

y − 3Ly/4√
Bu

)
, L3 ≤ y < L4

ub(y) = −b cosh
(

y − Ly√
Bu

)
, L4 ≤ y < Ly

m =
u

sinh(d/2
√

Bu)

b =
u

cosh(L1/
√

Bu)

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Water



Rotating Shallow Water
Instability Analysis

Analytic Methods for the Cosine Profile

Rayleigh’s Equation
Sine Profile Instability
Comparison with Shallow Water

Analytic solution with Rayleigh

fi(y) = Aiek̃y + Bie−k̃y , i = 1, . . . ,5.

for k̃ =
√

k2 + 1
Bu . Jump conditions:

W (f (y),ub(y)−c), and
f (y)

ub(y)− c
are continuous at interfaces.

Result in a system of linear equations for Ai ,Bi .
Approx. Scattering Relation:

c2k2d2

u2 =

[
kd − z

kd√
(kd)2 + d2/Bu

]2

−e−2k̃d (kd)2

(kd)2 + d2/Bu
z2

for z = (d/
√

Bu)(1 + coth(d/2
√

Bu))/2.
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Modes are eventually stable

Theorem (Casper)

Let yi be an inflection point of ub(y) and set us = ub(yi). Let k2
s

be the maximum eigenvalue of the discrete spectrum of

D(y , ∂y ) = ∂2
y −

1
Bu

+ K (y), K (y) = −(ub)′′(y)− ub(y)/Bu
ub(y)− us

.

with K (y) ≥ 0 throughout the field. Then k is stable for k ≥ ks.
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Figure: Growth rate vs. wave number for ub(y) = sin(40y)
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Figure: Must be stable for k ≥ 40 and move toward stability as k → 40
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Growth Rates

Figure: The most unstable wave number increases with decreasing
Bu. The dashed green line is an analytic approximation for Bu =∞.
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Linearization of Shallow Water

Background profile:

ηb = ηb(y), ub = ub(y) = −ηb(y)′, vb = 0.

Separable solution:

ηp = eik(x−ct)η̃(y), up = eik(x−ct)ũ(y), vp = eik(x−ct)i ṽ(y)

Linearized equation:

c

 ũ
ṽ

η̃/
√

Bu

 =
1

Ro


ubRo −1/k +

(ub )′
k Ro

√
Bu

−1/k ubRo −
√

Bu
k ∂

√
Bu + Ro√

Bu
ηb

√
Bu
k ∂ + Ro

k
√

Bu
(ηb∂ + (ηb)′) ubRo


 ũ

ṽ
η̃/
√

Bu
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Figure: The spectrum is broken up by high/low divergence.
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Orthogonal Polynomials on R

µ(x) a measure on R with finite moments.

Definition
The (normalized) sequence of orthogonal polynomials
(SOP) p0(x),p1(x), . . . for µ satisfies∫

pm(x)pn(x)dµ(x) = 0 for m 6= n
deg(pn(x)) = n for all n∫

pn(x)2dµ(x) = 1

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Water



Rotating Shallow Water
Instability Analysis

Analytic Methods for the Cosine Profile

Orthogonal Polynomials
Relation to Instability
Calculating Instability

Jacobi Matrices

Theorem
If p0(x),p1(x), . . . is a SOP for µ, then

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x).



b0 a0 0 0 . . .

a0 b1 a1 0 . . .

0 a1 b2 a2 . . .

0 0 a2 b2 . . .
...

...
...

...
...





p0(x)

p1(x)

p2(x)

p3(x)
...


= x



p0(x)

p1(x)

p2(x)

p3(x)
...


.
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Rayleigh’s Equation

For ub(y) = cos(y), Rayleigh’s equation

f ′′(y)−
(

k2 +
− cos(y)− c/Bu

cos(y)− c

)
f (y) = 0.

In spectral space:

1
2

(`+ 1)2 + k2 − 1
`2 + k2 + 1/Bu

f̂ (`+ 1) +
1
2

(`− 1)2 + k2 − 1
`2 + k2 + 1/Bu

f̂ (`− 1) = cf̂ (`),
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Rayleigh’s Equation

Setting

q̂(`) =
1√
2

(
`2 + k2 − 1

`2 + k2 + 1/Bu

)1/2

ĝ(`) = (`2 + k2 − 1)1/2(`2 + k2 + 1/Bu)1/2 f̂ (`)

We have

cĝ(`) = q̂(`)q̂(`+ 1)ĝ(`+ 1) + q̂(`)q̂(`− 1)ĝ(`− 1).

For convenience, let

zj = q̂(j)q̂(j + 1)
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Eigenvectors of bi-infinite matrix

B =



. . .
...

...
...

...
...

. . .

. . . 0 z1 0 0 0 . . .

. . . z1 0 z0 0 0 . . .

. . . 0 z0 0 z0 0 . . .

. . . 0 0 z0 0 z1 . . .

. . . 0 0 0 z1 0 . . .
. . .

...
...

...
...

...
. . .


.
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Eigenvectors of Jacobi matrix

B̃ =



0 2z0 0 0 . . .

z0 0 z1 0 . . .

0 z1 0 z2 . . .

0 0 z2 0 . . .
...

...
...

...
. . .


.
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Eigenvectors of Jacobi matrix

B̃2 =



2z2
0 0 2z0z1 0 . . .

0 2z2
0 + z2

1 0 z1z2 . . .

z0z1 0 z2
2 + z2

2 0 . . .

0 z1z2 0 z2
2 + z2

3 . . .
...

...
...

...
. . .
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Eigenvectors of Jacobi matrix

A =



2z2
0 + z2

1 z1z2 0 0 . . .

z1z2 z2
2 + z2

3 z3z4 0 . . .

0 z3z4 z2
4 + z2

5 z5z6 . . .

0 0 z5z6 z2
6 + z2

7 . . .
...

...
...

...
. . .
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Spectrum of A

Theorem (Casper)

The sequence of orthogonal polynomials pn(x) associated to A
satisfies:

each pn(x) has exactly one negative root rn1

−rn1 is monotone increasing
−rn1 converges to the unique negative eigenvalue of A
the limit is the growth rate
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Figure: |rn1| vs k for various values of n at Burger number 1 and 100.
Convergence is slower for larger Burger.
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Figure: The growth rate vs. wave number for various values of the
Burger number. Predicts increasing max unstable wave number with
decreasing Burger.
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Thank You!
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