Pseudospectral Methods and Instability in Rotating Shallow Water Boeing, February 2020

W.R. Casper

Department of Mathematics Louisiana State University

February 12, 2020

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

イロト イポト イヨト イヨト

æ

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques

Instability Analysis

- Rayleigh's Equation
- Sine Profile Instability
- Comparison with Shallow Water

3 Analytic Methods for the Cosine Profile

- Orthogonal Polynomials
- Relation to Instability
- Calculating Instability

< 🗇 🕨

- 신문 () - 신문

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques

Instability Analysis

- Rayleigh's Equation
- Sine Profile Instability
- Comparison with Shallow Water

3 Analytic Methods for the Cosine Profile

- Orthogonal Polynomials
- Relation to Instability
- Calculating Instability

イロト イ理ト イヨト イヨト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Geophysical Length Scales

- typical length scale of flow in the ocean: 15,000 km
- typical ocean depth: 3 km
- typical thickness of a sheet of paper: 0.0039 in

On a global scale the ocean is a paper-thin sheet on the surface of a basketball.

we can model a patch of ocean as a shallow water

イロト イポト イヨト イヨト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

The Shallow Water Equations

Shallow Water Equations

$$ec{u}_t + ec{u} \cdot
abla ec{u} = ec{u} imes f \hat{z} - g
abla \eta$$

 $\eta_t + (H + \eta)
abla \cdot ec{u} + ec{u} \cdot (
abla \eta) = 0$

- η free surface height
- H mean depth
- \vec{u} the (horizontal) fluid velocity

(!!) Assumes $H/L \ll 1$ where L is length scale of interest

イロト イポト イヨト イヨト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Non-dimensional Form

Non-dimensional Shallow Water Equations

$$\vec{u}_t + \vec{u} \cdot \nabla \vec{u} = \frac{1}{\text{Ro}} \vec{u} \times \hat{z} - \frac{1}{\text{Ro}} \nabla \eta$$
$$\eta_t + \left(\frac{\text{Bu}}{\text{Ro}} + \eta\right) \nabla \cdot \vec{u} + \vec{u} \cdot (\nabla \eta) = 0$$

• Ro =
$$U/(fL)$$

• Fr = U/\sqrt{gH}
• Bu = $(\text{Ro}/\text{Fr})^2 = (L_d/L)^2$ for L_d Rossby deformation radius

イロト イポト イヨト イヨト

ъ

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques

Instability Analysis

- Rayleigh's Equation
- Sine Profile Instability
- Comparison with Shallow Water

3 Analytic Methods for the Cosine Profile

- Orthogonal Polynomials
- Relation to Instability
- Calculating Instability

イロト イ理ト イヨト イヨト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Linearized Shallow Water

Linearizing around $\eta = 0$ and $\vec{u} = 0$:

$$u = \widetilde{u}(t)e^{ik_x x + ik_y y}, \quad v = \widetilde{v}(t)e^{ik_x x + ik_y y}, \quad \eta = \widetilde{\eta}(t)e^{ik_x x + ik_y y},$$

under which the linearized shallow water equations become

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{\eta}/\sqrt{\mathsf{Bu}} \end{bmatrix}' = \frac{1}{\mathsf{Ro}} \begin{bmatrix} 0 & 1 & -\sqrt{\mathsf{Bu}}ik_x \\ -1 & 0 & -\sqrt{\mathsf{Bu}}ik_y \\ -\sqrt{\mathsf{Bu}}ik_x & -\sqrt{\mathsf{Bu}}ik_y & 0 \end{bmatrix} \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{\eta}/\sqrt{\mathsf{Bu}} \end{bmatrix}$$

イロト イポト イヨト イヨト

•

Slow Modes

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Slow mode:

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{\eta} \end{bmatrix} \propto \begin{bmatrix} -ik_y \\ ik_x \\ 1 \end{bmatrix}$$

- note that $u = -\eta_y$ and $v = \eta_x$
- we will call this geostrophic balance

イロト イポト イヨト イヨト

ъ

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Fast Modes

Fast mode:

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{\eta} \end{bmatrix} \propto \begin{bmatrix} -ik_y - \lambda \operatorname{Ro} ik_x \\ ik_x - \lambda \operatorname{Ro} ik_y \\ -k^2 \operatorname{Bu} \end{bmatrix} e^{i\lambda t}$$

where here

$$\lambda = \pm \frac{1}{\text{Ro}} \sqrt{\text{Bu}(k_x^2 + k_y^2) + 1}.$$

- divergent phenomena: sound waves
- for $Ro \ll 1$, this limits simulation timesteps...

ヘロト ヘワト ヘビト ヘビト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Geostrophic Balance

- Away from the Equator: $Ro \ll 1$
- To leading order we have geostrophic balance

$$v = \eta_x$$
 and $u = -\eta_y$.

- Flow is perpendicular to the pressure gradient!
- Flow is divergence-free so no sound waves
- In dimensional coordinates

$$v = rac{g}{f}\eta_x$$
 and $u = -rac{g}{f}\eta_y$.

イロト イポト イヨト イヨト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Shallow Water for $Ro \ll 1$

Rossby number expansion:

$$\vec{u} = \vec{u}_0 + \vec{u}_1 \operatorname{Ro} + \mathcal{O}(\operatorname{Ro}^2)$$

 $\eta = \eta_0 + \eta_1 \operatorname{Ro} + \mathcal{O}(\operatorname{Ro}^2)$

Geostrophic decomposition:

$$ec{u}_i = ec{u}_{i,g} + ec{u}_{i,ag}, ext{ where } ec{u}_{i,g} imes ec{z} =
abla \eta_i$$

イロン イロン イヨン イヨン

ъ

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

The Quasi-geostrophic Model

Then to order 0 in Ro: $\vec{u}_{0,ag} = \vec{0}$ and

$$(\vec{u}_{0,g})_t + \vec{u}_{0,g} \cdot \nabla \vec{u}_{0,g} = \vec{u}_1 \times \hat{z} - \nabla \eta_1.$$

$$(\eta_{0,g})_t + \mathsf{Bu} \nabla \cdot \vec{u}_1 = 0.$$

This simplifies to a closed equation

$$\left(1-\frac{\Delta^{-1}}{\mathsf{Bu}}\right)(\vec{u}_{0,g})_t+\vec{u}_{0,g}\cdot\nabla\vec{u}_{0,g}=-\nabla p_{0,g},$$

where $p_{0,g}$ is the **geostrophic pressure**

$$-\Delta p_{0,g} =
abla \cdot (\vec{u}_{0,g} \cdot
abla \vec{u}_{0,g}).$$

イロン 不同 とくほう イヨン

æ

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Stream Function Formulation

The stream function ψ satisfies

$$\vec{u}_{0,g} = \hat{z} \times \nabla \psi$$
, and $\nabla \times \vec{u}_{0,g} = -\Delta \psi$.

Taking the curl of the QG-model and simplifying:

$$oldsymbol{q}_t + oldsymbol{J}(\psi,oldsymbol{q}) = oldsymbol{0}, ext{ where } oldsymbol{J}(\psi,oldsymbol{q}) = \psi_{oldsymbol{x}}oldsymbol{q}_{oldsymbol{y}} - \psi_{oldsymbol{y}}oldsymbol{q}_{oldsymbol{x}},$$

$$q = \Delta \psi - rac{1}{\mathsf{Bu}} \psi$$
 potential vorticity

イロト イポト イヨト イヨト

æ

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques

Instability Analysis

- Rayleigh's Equation
- Sine Profile Instability
- Comparison with Shallow Water
- 3 Analytic Methods for the Cosine Profile
 - Orthogonal Polynomials
 - Relation to Instability
 - Calculating Instability

イロト イ理ト イヨト イヨト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

A Simple Example

Consider the KdV equation:

$$u_t + u_{xxx} = 6uu_x.$$

Pseudo-spectral technique:

- do all products in physical space
- do all spatial derivatives in spectral space $\pi^{-1}(13\pi(x)) = 0$

$$u_t = \mathcal{F}^{-1}(ik^3\mathcal{F}(u)) + 6u\mathcal{F}^{-1}(ik\mathcal{F}(u)).$$

Important: aliasing errors

イロト イポト イヨト イヨト

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

The Code

- source code written in C
- capable of solving multiple models
 - 2 and 3-dim DNS
 - Boussinesq
 - shallow water and qg shallow water
- capable of periodic and rigid lid boundary
- uses P3DFFT for 2 or 3-dim fast Fourier transforms
 - allows pencil domain decomposition
 - scales well with thousands of processors
- diagnostic calculation, file I/O, parallelization with OpenMPI

イロン 不同 とくほう イヨン

э.

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Initial PV

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Water

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

PV at *t* = 50

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Water

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

PV at *t* = 100

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

æ

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

PV at *t* = 150

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Water

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

PV at *t* = 200

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Water

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

The Evolutionary Picture

- Presence of linear instabilities causes growth of certain wave modes
- In above, instabilities caused by interactions between interfacial waves
- The fastest growing mode will be dominant
- Nonlinear advection term causes these to rotate/interact
- Eventually transitions to turbulent regime (dipole pv)

イロト イポト イヨト イヨト

æ

Shallow Water Equations Quasi-geostrophic model Pseudospectral Techniques

Questions

- Energy flows from small scales to large scales (inverse scattering)
- Can we predict the number of vortices?
- How does the number of vortices vary with Ro, Fr, Bu?
- How does the picture change in the full shallow water equations?

イロト イポト イヨト イヨト

æ

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques

Instability Analysis

- Rayleigh's Equation
- Sine Profile Instability
- Comparison with Shallow Water
- 3 Analytic Methods for the Cosine Profile
 - Orthogonal Polynomials
 - Relation to Instability
 - Calculating Instability

イロト イ理ト イヨト イヨト

Linearized QG

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Consider a perturbation ψ^{ρ} from a background profile ψ^{b} :

$$q_t^b+q_t^p+J(\psi^b,q^b)+J(\psi^b,q^p)+J(\psi^p,q^b)+J(\psi^p,q^p)=0,$$

Dropping nonlinear perturbation terms:

Linearized QG PV Equation

$$q^{p}_t+J(\psi^{b},q^{p})+J(\psi^{p},q^{b})=0$$

イロン イボン イヨン イヨン

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Rayleigh Equation

Base state:

$$\psi^b = -\int u^b(y)dy$$

Linearized QG PV:

$$q_t^p + (q^b)'\psi_x^p - (\psi^b)'q_x^p = 0.$$

Substitute perturbed solution:

$$\psi^{p}(x, y, t) = e^{ik(x-ct)}f(y)$$

Rayleigh Equation:

$$f''(y) - \left(k^2 + \frac{u^b(y)'' - c/Bu}{u^b(y) - c}\right)f(y) = 0.$$

イロト イポト イヨト イヨト

ъ

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Background Profile

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Background Profile

$$\begin{split} u^{b}(y) &= -b\cosh(y/\sqrt{\mathsf{Bu}}), & 0 \leq y < L_{1} \\ u^{b}(y) &= m\sinh\left(\frac{y-L_{y}/4}{\sqrt{\mathsf{Bu}}}\right), & L_{1} \leq y < L_{2} \\ u^{b}(y) &= b\cosh\left(\frac{y-L_{y}/2}{\sqrt{\mathsf{Bu}}}\right)), & L_{2} \leq y < L_{3} \\ u^{b}(y) &= -m\sinh\left(\frac{y-3L_{y}/4}{\sqrt{\mathsf{Bu}}}\right), & L_{3} \leq y < L_{4} \\ u^{b}(y) &= -b\cosh\left(\frac{y-L_{y}}{\sqrt{\mathsf{Bu}}}\right), & L_{4} \leq y < L_{y} \\ m &= \frac{u}{\sinh(d/2\sqrt{\mathsf{Bu}})} \\ b &= \frac{u}{\cosh(L_{1}/\sqrt{\mathsf{Bu}})} \end{split}$$

<ロト <回 > < 注 > < 注 > 、

E DQC

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Analytic solution with Rayleigh

$$f_i(\mathbf{y}) = \mathbf{A}_i \mathbf{e}^{\widetilde{k}\mathbf{y}} + \mathbf{B}_i \mathbf{e}^{-\widetilde{k}\mathbf{y}}, \ i = 1, \dots, 5.$$

for $\widetilde{k} = \sqrt{k^2 + \frac{1}{Bu}}$. Jump conditions:

$$W(f(y), u^{b}(y)-c)$$
, and $\frac{f(y)}{u^{b}(y)-c}$ are continuous at interfaces.

Result in a system of linear equations for A_i, B_i . Approx. Scattering Relation:

$$\frac{c^2k^2d^2}{u^2} = \left[kd - z\frac{kd}{\sqrt{(kd)^2 + d^2/Bu}}\right]^2 - e^{-2\widetilde{k}d}\frac{(kd)^2}{(kd)^2 + d^2/Bu}z^2$$

for $z = (d/\sqrt{\mathrm{Bu}})(1 + \coth(d/2\sqrt{\mathrm{Bu}}))/2$.

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Instability Growth Rate

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Most Unstable Wave Number

W.R. Casper

Pseudospectral Methods and Instability in Rotating Shallow Water

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Modes are eventually stable

Theorem (Casper)

Let y_i be an inflection point of $u^b(y)$ and set $u_s = u^b(y_i)$. Let k_s^2 be the maximum eigenvalue of the discrete spectrum of

$$D(y, \partial_y) = \partial_y^2 - \frac{1}{Bu} + K(y), \ K(y) = -\frac{(u^b)''(y) - u^b(y)/Bu}{u^b(y) - u_s}.$$

with $K(y) \ge 0$ throughout the field. Then k is stable for $k \ge k_s$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques

Instability Analysis

- Rayleigh's Equation
- Sine Profile Instability
- Comparison with Shallow Water
- 3 Analytic Methods for the Cosine Profile
 - Orthogonal Polynomials
 - Relation to Instability
 - Calculating Instability

イロト イ理ト イヨト イヨト

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Growth Rates

Figure: Growth rate vs. wave number for $u^{b}(y) = \sin(40y)$

ъ

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Growth Rates

Figure: Must be stable for $k \ge 40$ and move toward stability as $k \to 40$

ъ

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Growth Rates

Figure: The most unstable wave number increases with decreasing Bu. The dashed green line is an analytic approximation for $Bu = \infty$.

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques

Instability Analysis

- Rayleigh's Equation
- Sine Profile Instability
- Comparison with Shallow Water

3 Analytic Methods for the Cosine Profile

- Orthogonal Polynomials
- Relation to Instability
- Calculating Instability

イロト イ理ト イヨト イヨト

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Linearization of Shallow Water

Background profile:

$$\eta^{b} = \eta^{b}(y), \ \ u^{b} = u^{b}(y) = -\eta^{b}(y)', \ \ v^{b} = 0.$$

Separable solution:

$$\eta^{\rho} = e^{ik(x-ct)}\widetilde{\eta}(y), \quad u^{\rho} = e^{ik(x-ct)}\widetilde{u}(y), \quad v^{\rho} = e^{ik(x-ct)}i\widetilde{v}(y)$$

Linearized equation:

$$c \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{\eta}/\sqrt{Bu} \end{bmatrix} = \frac{1}{Ro} \begin{bmatrix} u^{b}Ro & -1/k + \frac{(u^{b})'}{k}Ro & \sqrt{Bu} \\ -1/k & u^{b}Ro & -\frac{\sqrt{Bu}}{k}\partial \\ \sqrt{Bu} + \frac{Ro}{\sqrt{Bu}}\eta^{b} & \frac{\sqrt{Bu}}{k}\partial + \frac{Ro}{k\sqrt{Bu}}(\eta^{b}\partial + (\eta^{b})') & u^{b}Ro \end{bmatrix} \begin{bmatrix} \tilde{u} & \tilde{v} \\ \tilde{\eta}/\sqrt{Bu} & \tilde{u} \end{bmatrix}$$

イロト イポト イヨト イヨト

э

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Growth Rates

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

ъ

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Growth Rates

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

ъ

э

Rayleigh's Equation Sine Profile Instability Comparison with Shallow Water

Ageostrophic Instabilities

Figure: The spectrum is broken up by high/low divergence.

ъ

Orthogonal Polynomials Relation to Instability Calculating Instability

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques
- Instability Analysis
 - Rayleigh's Equation
 - Sine Profile Instability
 - Comparison with Shallow Water

3 Analytic Methods for the Cosine Profile

- Orthogonal Polynomials
- Relation to Instability
- Calculating Instability

イロト イ理ト イヨト イヨト

Orthogonal Polynomials Relation to Instability Calculating Instability

Orthogonal Polynomials on $\mathbb R$

$\mu(x)$ a measure on \mathbb{R} with finite moments.

Definition

The (normalized) **sequence of orthogonal polynomials** (SOP) $p_0(x), p_1(x), \ldots$ for μ satisfies

•
$$\int p_m(x)p_n(x)d\mu(x) = 0$$
 for $m \neq n$

•
$$\deg(p_n(x)) = n$$
 for all n

•
$$\int p_n(x)^2 d\mu(x) = 1$$

くロト (過) (目) (日)

ъ

Orthogonal Polynomials Relation to Instability Calculating Instability

Jacobi Matrices

Theorem

If $p_0(x), p_1(x), \ldots$ is a SOP for μ , then

 $xp_n(x) = a_np_{n+1}(x) + b_np_n(x) + a_{n-1}p_{n-1}(x).$

$$\begin{bmatrix} b_0 & a_0 & 0 & 0 & \dots \\ a_0 & b_1 & a_1 & 0 & \dots \\ 0 & a_1 & b_2 & a_2 & \dots \\ 0 & 0 & a_2 & b_2 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} p_0(x) \\ p_1(x) \\ p_2(x) \\ p_3(x) \\ \vdots \end{bmatrix} = x \begin{bmatrix} p_0(x) \\ p_1(x) \\ p_2(x) \\ p_3(x) \\ \vdots \end{bmatrix}$$

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

ヘロト 人間 とくほとく ほとう

E DQC

Orthogonal Polynomials Relation to Instability Calculating Instability

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques
- Instability Analysis
 - Rayleigh's Equation
 - Sine Profile Instability
 - Comparison with Shallow Water

3 Analytic Methods for the Cosine Profile

- Orthogonal Polynomials
- Relation to Instability
- Calculating Instability

イロト イ理ト イヨト イヨト

Orthogonal Polynomials Relation to Instability Calculating Instability

Rayleigh's Equation

For $u^{b}(y) = \cos(y)$, Rayleigh's equation

$$f''(y) - \left(k^2 + \frac{-\cos(y) - c/\mathsf{Bu}}{\cos(y) - c}\right)f(y) = 0.$$

In spectral space:

$$\frac{1}{2}\frac{(\ell+1)^2+k^2-1}{\ell^2+k^2+1/\mathsf{Bu}}\hat{f}(\ell+1)+\frac{1}{2}\frac{(\ell-1)^2+k^2-1}{\ell^2+k^2+1/\mathsf{Bu}}\hat{f}(\ell-1)=c\hat{f}(\ell),$$

イロン 不同 とくほ とくほ とう

Orthogonal Polynomials Relation to Instability Calculating Instability

Rayleigh's Equation

Setting

$$\hat{q}(\ell) = \frac{1}{\sqrt{2}} \left(\frac{\ell^2 + k^2 - 1}{\ell^2 + k^2 + 1/\mathsf{Bu}} \right)^{1/2}$$
$$\hat{g}(\ell) = (\ell^2 + k^2 - 1)^{1/2} (\ell^2 + k^2 + 1/\mathsf{Bu})^{1/2} \hat{f}(\ell)$$

We have

$$c\hat{g}(\ell)=\hat{q}(\ell)\hat{q}(\ell+1)\hat{g}(\ell+1)+\hat{q}(\ell)\hat{q}(\ell-1)\hat{g}(\ell-1).$$

For convenience, let

$$z_j = \widehat{q}(j)\widehat{q}(j+1)$$

イロト イポト イヨト イヨト

ъ

Orthogonal Polynomials Relation to Instability Calculating Instability

Eigenvectors of bi-infinite matrix

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Orthogonal Polynomials Relation to Instability Calculating Instability

Eigenvectors of Jacobi matrix

$$\widetilde{B} = \begin{bmatrix} 0 & 2z_0 & 0 & 0 & \dots \\ z_0 & 0 & z_1 & 0 & \dots \\ 0 & z_1 & 0 & z_2 & \dots \\ 0 & 0 & z_2 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

イロン イロン イヨン イヨン

Orthogonal Polynomials Relation to Instability Calculating Instability

Eigenvectors of Jacobi matrix

$$\widetilde{B}^{2} = \begin{bmatrix} 2z_{0}^{2} & 0 & 2z_{0}z_{1} & 0 & \dots \\ 0 & 2z_{0}^{2} + z_{1}^{2} & 0 & z_{1}z_{2} & \dots \\ z_{0}z_{1} & 0 & z_{2}^{2} + z_{2}^{2} & 0 & \dots \\ 0 & z_{1}z_{2} & 0 & z_{2}^{2} + z_{3}^{2} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

◆□ > ◆□ > ◆豆 > ◆豆 > -

Orthogonal Polynomials Relation to Instability Calculating Instability

Eigenvectors of Jacobi matrix

$$A = \begin{bmatrix} 2z_0^2 + z_1^2 & z_1z_2 & 0 & 0 & \dots \\ z_1z_2 & z_2^2 + z_3^2 & z_3z_4 & 0 & \dots \\ 0 & z_3z_4 & z_4^2 + z_5^2 & z_5z_6 & \dots \\ 0 & 0 & z_5z_6 & z_6^2 + z_7^2 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

W.R. Casper Pseudospectral Methods and Instability in Rotating Shallow Wate

◆□ > ◆□ > ◆豆 > ◆豆 > -

Orthogonal Polynomials Relation to Instability Calculating Instability

Outline

Rotating Shallow Water

- Shallow Water Equations
- Quasi-geostrophic model
- Pseudospectral Techniques
- Instability Analysis
 - Rayleigh's Equation
 - Sine Profile Instability
 - Comparison with Shallow Water

3 Analytic Methods for the Cosine Profile

- Orthogonal Polynomials
- Relation to Instability
- Calculating Instability

イロト イポト イヨト イヨト

Spectrum of A

Orthogonal Polynomials Relation to Instability Calculating Instability

Theorem (Casper)

The sequence of orthogonal polynomials $p_n(x)$ associated to A satisfies:

- each $p_n(x)$ has exactly one negative root r_{n1}
- -*r*_{n1} is monotone increasing
- -r_{n1} converges to the unique negative eigenvalue of A
- the limit is the growth rate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rotating Shallow Water Instability Analysis Analytic Methods for the Cosine Profile Calculating Instability

Figure: $|r_{n1}|$ vs *k* for various values of *n* at Burger number 1 and 100. Convergence is slower for larger Burger.

イロト イポト イヨト イヨト

Figure: The growth rate vs. wave number for various values of the Burger number. Predicts increasing max unstable wave number with decreasing Burger.

イロト イポト イヨト イヨト

э

Orthogonal Polynomials Relation to Instability Calculating Instability

Thank You!

- Casper, W. R. A Connection Between Orthogonal Polynomials and Shear Instabilities in the Quasi-geostrophic Shallow Water Equations. ArXiv 1701.07048
- Nadiga, B. T. Nonlinear Evolution of a Baroclinic Wave and Imbalanced Dissipation J. Fluid Mech. (2014), vol 756, pp. 965-1006
- Drazin, P. G. and Reid, W. H. *Hydrodynamic Stability* New York: Cambridge University Press. ISBN 978-0521227988.

ヘロト 人間 ト ヘヨト ヘヨト

æ