Representation Theory and the Matrix Bochner Problem

AMS-CMS Joint Meeing

W.R. Casper

Department of Mathematics
Louisiana State University
June 8, 2018

Outline

(9) Orthogonal Matrix Polynomials

(2) The Matrix Bochner Problem

(3) Classification

Basic definitions

Definition

A weight matrix $W(x)$ supported on (a, b) is an $N \times N$ matrix-valued function on \mathbb{R} which:

- is smooth, positive-definite, and Hermitian on (a, b)
- is zero on $\mathbb{R} \backslash(a, b)$
- has finite moments $\int_{a}^{b}|x|^{n} W(x) d x<\infty$

Example:

$$
W(x)=\left(\begin{array}{cc}
1+|a|^{2} x^{2} & a x \\
\bar{a} x & 1
\end{array}\right) e^{-x^{2}}
$$

Basic definitions

Definition

A sequence of orthogonal matrix polynomials (OMPs) on \mathbb{R} is a sequence of $N \times N$ matrix-valued polynomials $P_{0}(x), P_{1}(x), \ldots$ with

- $P_{n}(x)$ degree n with nonsingular leading coeff. for all n
- $\int P_{m}(x) W(x) P_{n}(x)^{*} d x=0$ for $m \neq n$
where $W(x)$ is an $N \times N$ weight matrix on \mathbb{R}.
Correspondence:
moments + inverse Stieltjes transform

Applications

James E. Humphreys
Introduction to Lie Algebras and Representation Theory
(9) Springer

Matrix Differential Operators

- We will consider matrix-valued differential operators

Example:

$$
\mathfrak{D}=\partial_{x}^{2}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\partial_{x}\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right)=\left(\begin{array}{cc}
\partial_{x} x+1 & \partial_{x}^{2} \\
2 & 0
\end{array}\right) .
$$

Right action:

$$
P(x) \cdot \mathfrak{D}=P^{\prime \prime}(x)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+P^{\prime}(x)\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)+P(x)\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right) .
$$

Matrix Bochner Problem

Problem

Classify all orthogonal matrix polynomials which are eigenfunctions of a second-order matrix differential operator.

- Equiv. classify all weights $W(x)$
- Long-standing (Bochner 1929, Kreǐn 1949, Durán 1997)
- More generally, calculate

$$
\mathcal{D}(W)=\left\{\mathfrak{D}: \forall n \exists \wedge(n) \in M_{N}(\mathbb{C}) \text { s.t. } P_{n}(x) \cdot \mathfrak{D}=\Lambda(n) P_{n}(x)\right\} .
$$

Classical (scalar) examples

- Hermite polynomials corresp. to weight $W(x)=e^{-x^{2}}$ are eigenfunctions of $\partial_{x}^{2}-2 x$
- Laguerre polynomials corresp. to weight $W(x)=x^{b} e^{-x} 1_{(0, \infty)}(x)$ are eigenfunctions of $\partial_{x}^{2} x+\partial_{x}(b+1-x)$
- Jacobi polynomials corresp. to weight $W(x)=(1-x)^{a}(1+x)^{b} 1_{(-1,1)}(x)$ are eigenfunctions of $\partial_{x}^{2}(1-x)^{2}+\partial_{x}(a-b-(a+b+2) x)$

Theorem (Bochner)

Up to affine trans. these are all possible cases which are 1×1

Differential operators and algebras

Idea

The value of a differential operator \mathfrak{D} is controlled by the algebras they are contained in.

Example $\left(\mathfrak{d}=\partial_{x}^{2}+u(x)\right)$:
Centralizer $\mathcal{C}(\mathfrak{d})$ can determine $u(x)$.

- If $\mathcal{C}(\mathfrak{d})$ contains an operator of order 3 , then $u(x)$ gives a soliton solution of KdV
- More generally, if $X=\operatorname{Spec}(\mathcal{C}(\mathfrak{d})) \not \equiv \mathbb{A}^{1}$ then $u(x)$ is determined by a special function related to X

The algebra $\mathcal{D}(W)$

Big idea: determine \mathfrak{D} from the algebraic structure of $\mathcal{D}(W)$

- $\mathcal{D}(W) \subseteq M_{N}\left(\mathbb{C}\left[x, \partial_{x}\right]\right)^{0 p}$ noncommutative
- closed under adjoint operation

$$
\mathfrak{D} \mapsto \mathfrak{D}^{\dagger}=W(x) \mathfrak{D}^{*} W(x)^{-1}
$$

- center $\mathcal{Z}(W)$ is reduced, affine over \mathbb{C}, Krull dim 1
- $\mathcal{D}(W)$ is also affine algebra over \mathbb{C} (nontrivial!)
- $\mathcal{D}(W)$ is a finite $\mathcal{Z}(W)$-module
- noncommutative, semiprime PI algebra
- bispectral algebra

Local structure of $\mathcal{D}(W)$

- Ring of fractions

$$
\mathcal{F}(W)=\left\{B^{-1} A: A, B \in \mathcal{Z}(W), B \text { not a zero divisor }\right\} .
$$

- $\mathcal{F}_{i}(W), i=1, \ldots, r$ fraction field of i 'th irred. component of $\operatorname{Spec}(\mathcal{Z}(W))$

Theorem (-,Yakimov 2018)

$$
\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_{i}}\left(\mathcal{F}_{i}(W)\right)
$$

Classification

- $n_{1}+\cdots+n_{r}$ is the rank of $\mathcal{D}(W)$ (bounded by ℓ)

Theorem (-, Yakimov 2018)

Let $W(x)$ be an $\ell \times \ell$ weight matrix solving Bochner, with $\mathcal{D}(W)$ having rank ℓ. Then $W(x)$ is a noncommutative bispectral Darboux transformation of a direct sum of classical weights. In particular

$$
\begin{gathered}
W(x)=T(x) \operatorname{diag}\left(r_{1}(x), \ldots, r_{\ell}(x)\right) T(x)^{*} \\
P_{n}(x)=\operatorname{diag}\left(p_{1 n}(x), \ldots, p_{\ell, n}(x)\right) \cdot \mathfrak{T}
\end{gathered}
$$

for some rational matrix $T(x)$, classical weights $r_{1}(x), \ldots, r_{\ell}(x)$, and differential operator \mathfrak{T}.

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite J-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Koelink, Erik and van Pruijssen, Maarten and Román, Pablo. Matrix-valued orthogonal polynomials related to $(S U(2) \times S U(2)$, diag $)$, IMRN 2012

