Commuting Integral and Differential Operators Proving the Conjecture Future Directions

The Geometry of Commuting Integral and Differential Operators California State University Fullerton, January 2020

W.R. Casper

Department of Mathematics Louisiana State University

February 4, 2020

ne acometry of commuting integral and Differential Operators

Commuting Integral and Differential Operators Proving the Conjecture Future Directions

Outline

- Time and Band-Limiting
- Bispectrality
- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof
- 3 Future Directions
 - Discrete Time and Band Limiting
 - Other Future Directions

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Outline

Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof
- 3 Future Directions
 - Discrete Time and Band Limiting
 - Other Future Directions

W.R. Casper

Time and Band-Limiting

A Problem from Mathematical Communication Theory

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model

Future Directions

- information: function of time f(t)

Time and Band-Limiting Bispectrality

A Problem from Mathematical Communication Theory

Future Directions

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model

- information: function of time f(t)
- convert to amplitudes and frequencies to send over the line
 - convert back at the other end

Noise limits the frequencies $[-\kappa, \kappa]$ we can communicate, and the call duration τ limits the time.

Time and Band-Limiting Bispectrality

A Problem from Mathematical Communication Theory

Future Directions

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model

- information: function of time f(t)
- convert to amplitudes and frequencies to send over the line
- convert back at the other end

Noise limits the frequencies $[-\kappa, \kappa]$ we can communicate, and the call duration τ limits the time.

Future Directions

Time and Band-Limiting Bispectrality

A Problem from Mathematical Communication Theory

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model

- information: function of time f(t)
- convert to amplitudes and frequencies to send over the line
- convert back at the other end

Noise limits the frequencies $[-\kappa, \kappa]$ we can communicate, and the call duration τ limits the time.

ving the Conjecture Future Directions Time and Band-Limiting Bispectrality

4 E > 4

Integral Operators

Our model is expressed mathematically as an integral operator.

Definition

A **integral operator** is a transformation T taking a function f(x) to a new function

$$T(f)(x) = \int_{a}^{b} K(x, y) f(y) dy,$$

where here K(x, y) is a function of two variables called the **kernel** of T.

Important examples: Fourier transform and Laplace transform

Future Directions

Time and Band-Limiting Bispectrality

Integral Operators

Our model is expressed mathematically as an integral operator.

Definition

A **integral operator** is a transformation T taking a function f(x) to a new function

$$T(f)(x) = \int_a^b K(x, y) f(y) dy,$$

where here K(x, y) is a function of two variables called the **kernel** of *T*.

Important examples: Fourier transform and Laplace transform

Future Directions

Time and Band-Limiting Bispectrality

Integral Operators

Our model is expressed mathematically as an integral operator.

Definition

A **integral operator** is a transformation T taking a function f(x) to a new function

$$T(f)(x) = \int_a^b K(x, y) f(y) dy,$$

where here K(x, y) is a function of two variables called the **kernel** of *T*.

Important examples: Fourier transform and Laplace transform

Time and Band-Limiting Bispectrality

Time and Band-Limiting Operator

Communicating f(t) over the phone line is the same as:

$$T(f)(t) = \int_0^ au rac{\sin(2\pi\kappa(t-s))}{\pi(t-s)} f(s) ds, \ \ 0 \leq t \leq au.$$

This is called a time and band-limiting operator.

Time and Band-Limiting Bispectrality

Time and Band-Limiting Operator

Communicating f(t) over the phone line is the same as:

$$T(f)(t) = \int_0^ au rac{\sin(2\pi\kappa(t-s))}{\pi(t-s)} f(s) ds, \ \ 0 \leq t \leq au.$$

This is called a time and band-limiting operator.

W.R. Casper

Time and Band-Limiting Bispectrality

Time and Band-Limiting Operator

Communicating f(t) over the phone line is the same as:

$$T(f)(t) = \int_0^ au rac{\sin(2\pi\kappa(t-s))}{\pi(t-s)} f(s) ds, \ \ 0 \leq t \leq au.$$

This is called a time and band-limiting operator.

W.R. Casper

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from T(f) for some functions?

• Yes, for eigenfunctions of *T*!

Definition

An **eigenfunction** of T is a function f(t) satisfying

 $T(f)(t) = \lambda f(t), \text{ for some } \lambda \in \mathbb{C}.$

• Shannon's problem: find the eigenfunctions

ne deemetry of commuting integral and Emerential operators

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from T(f) for some functions?

• Yes, for eigenfunctions of *T*!

Definition

An **eigenfunction** of T is a function f(t) satisfying

 $T(f)(t) = \lambda f(t), \text{ for some } \lambda \in \mathbb{C}.$

• Shannon's problem: find the eigenfunctions

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from T(f) for some functions?

• Yes, for eigenfunctions of *T*!

Definition

An **eigenfunction** of T is a function f(t) satisfying

 $T(f)(t) = \lambda f(t)$, for some $\lambda \in \mathbb{C}$.

• Shannon's problem: find the eigenfunctions

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from T(f) for some functions?

• Yes, for eigenfunctions of *T*!

Definition

An **eigenfunction** of T is a function f(t) satisfying

 $T(f)(t) = \lambda f(t)$, for some $\lambda \in \mathbb{C}$.

• Shannon's problem: find the eigenfunctions

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

▶ < 프 > < 프 >

Fast-forward 20 years

• the problem is solved by Landau, Pollak, and Slepian!

Definition

A differential operator

$$D(x,\partial_x) = a_0(x) + a_1(x)\partial_x + \cdots + a_n(x)\partial_x^n$$

is a transformation taking a function f(x) to a new function

 $D(f)(x) = a_0(x)f(x) + a_1(x)f'(x) + a_2(x)f''(x) + \dots + a_n(x)f^{(n)}(x).$

Example

 $D(x, \partial_x) = x\partial_x^2 + 2x$ means D(f)(x) = xf''(x) + 2xf(x)

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

向下 イヨト イヨト

Fast-forward 20 years

• the problem is solved by Landau, Pollak, and Slepian!

Definition

A differential operator

$$D(x,\partial_x) = a_0(x) + a_1(x)\partial_x + \cdots + a_n(x)\partial_x^n$$

is a transformation taking a function f(x) to a new function

$$D(f)(x) = a_0(x)f(x) + a_1(x)f'(x) + a_2(x)f''(x) + \dots + a_n(x)f^{(n)}(x).$$

Example

 $D(x, \partial_x) = x\partial_x^2 + 2x$ means D(f)(x) = xf''(x) + 2xf(x)

ng the Conjecture Future Directions Time and Band-Limiting Bispectrality

3 N A 3 N

Fast-forward 20 years

• the problem is solved by Landau, Pollak, and Slepian!

Definition

A differential operator

$$D(x,\partial_x) = a_0(x) + a_1(x)\partial_x + \cdots + a_n(x)\partial_x^n$$

is a transformation taking a function f(x) to a new function

$$D(f)(x) = a_0(x)f(x) + a_1(x)f'(x) + a_2(x)f''(x) + \dots + a_n(x)f^{(n)}(x).$$

Example

$$D(x, \partial_x) = x\partial_x^2 + 2x$$
 means $D(f)(x) = xf''(x) + 2xf(x)$

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Commuting Operators

Theorem (Landau-Pollak and Pollak-Slepian)

The differential operator $D(x, \partial_x) = (\kappa^2 - x^2)\partial_x^2 - 2x\partial_x + \tau^2 x^2$ commutes with Shannon's time and band-limiting operator *T*:

T(D(f))(x) = D(T(f))(x).

• Consequence: T and D will have to share eigenfunctions.

 $T(f)(x) = \lambda f(x)$ if and only if $D(f)(x) = \mu f(x)$

• Just solve the differential equation

$$(\kappa^2 - x^2)f''(x) - 2xf'(x) + \tau^2 x^2 f(x) = \mu f(x).$$

no acomeny of community integral and Differential Operators

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Commuting Operators

Theorem (Landau-Pollak and Pollak-Slepian)

The differential operator $D(x, \partial_x) = (\kappa^2 - x^2)\partial_x^2 - 2x\partial_x + \tau^2 x^2$ commutes with Shannon's time and band-limiting operator *T*:

T(D(f))(x) = D(T(f))(x).

• Consequence: *T* and *D* will have to share eigenfunctions.

 $T(f)(x) = \lambda f(x)$ if and only if $D(f)(x) = \mu f(x)$

• Just solve the differential equation

$$(\kappa^2 - x^2)f''(x) - 2xf'(x) + \tau^2 x^2 f(x) = \mu f(x).$$

Proving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Commuting Operators

Theorem (Landau-Pollak and Pollak-Slepian)

The differential operator $D(x, \partial_x) = (\kappa^2 - x^2)\partial_x^2 - 2x\partial_x + \tau^2 x^2$ commutes with Shannon's time and band-limiting operator *T*:

T(D(f))(x) = D(T(f))(x).

• Consequence: *T* and *D* will have to share eigenfunctions.

 $T(f)(x) = \lambda f(x)$ if and only if $D(f)(x) = \mu f(x)$

• Just solve the differential equation

$$(\kappa^2 - x^2)f''(x) - 2xf'(x) + \tau^2 x^2 f(x) = \mu f(x).$$

no acomeny of community integral and Emercinital operators

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Outline

Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof
- 3 Future Directions
 - Discrete Time and Band Limiting
 - Other Future Directions

Proving the Conjecture Future Directions Time and Band-Limiting Bispectrality

More Examples are Found

Question

More commuting integral and differential operators?

Slepian 1960's

- examples from spherical harmonics
- extensions to n dimensions

Tracy and Widom 1990's

- examples from random matrix theory
- efined by Airy and Bessel functions
- 3 2020 Steele prize

Figure: David Slepian

Figure: Craig Tracy and Harold Widom

the deemetry of commuting integral and Emerential Operators

Commuting Integral and Differential Operators Proving the Conjecture Euture Directions

Time and Band-Limiting Bispectrality

Unifying Theory

• Examples arise naturally in diverse areas!

Question

Can we find a unifying theory or construction?

Observation by Duistermaat and Grünbaum (1986):

• the integral operators found all have very special kernels

$$K(x,y) = \int_{-r}^{r} \psi(x,z)\psi^*(y,z)dz$$

where $\psi(x, z)$ is a special kind of function called a **bispectral function**.

W.R. Casper

Commuting Integral and Differential Operators Proving the Conjecture Euture Directions

Time and Band-Limiting Bispectrality

Unifying Theory

• Examples arise naturally in diverse areas!

Question

Can we find a unifying theory or construction?

Observation by Duistermaat and Grünbaum (1986):

• the integral operators found all have very special kernels

$$K(x,y) = \int_{-r}^{r} \psi(x,z)\psi^*(y,z)dz$$

where $\psi(x, z)$ is a special kind of function called a **bispectral function**.

W.R. Casper

ne deemeny of community integral and Differential operators

Commuting Integral and Differential Operators Proving the Conjecture Euture Directions

Time and Band-Limiting Bispectrality

Unifying Theory

• Examples arise naturally in diverse areas!

Question

Can we find a unifying theory or construction?

Observation by Duistermaat and Grünbaum (1986):

• the integral operators found all have very special kernels

$$K(\mathbf{x},\mathbf{y}) = \int_{-r}^{r} \psi(\mathbf{x},\mathbf{z})\psi^{*}(\mathbf{y},\mathbf{z})d\mathbf{z}$$

where $\psi(x, z)$ is a special kind of function called a **bispectral function**.

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Bispectral functions

Definition

A function $\psi(x, z)$ is **bispectral** if it simultaneously satisfies two differential equations

$$a_0(x)\psi + a_1(x)\frac{\partial\psi}{\partial x} + \dots + a_m(x)\frac{\partial^m\psi}{\partial x^m} = g(z)\psi.$$

$$b_0(z)\psi + b_1(z)\frac{\partial\psi}{\partial z} + \dots + b_n(z)\frac{\partial^n\psi}{\partial z^n} = f(x)\psi.$$

In terms of differential operators:

• there are operators $D(x, \partial_x)$ and $B(z, \partial_z)$ with

$$D(x,\partial_x)\cdot\psi(x,z)=g(z)\psi(x,z)$$

$$B(z,\partial_z)\cdot\psi(x,z)=f(x)\psi(x,z).$$

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Bispectral functions

Definition

A function $\psi(x, z)$ is **bispectral** if it simultaneously satisfies two differential equations

$$a_0(x)\psi + a_1(x)\frac{\partial\psi}{\partial x} + \dots + a_m(x)\frac{\partial^m\psi}{\partial x^m} = g(z)\psi.$$

$$b_0(z)\psi + b_1(z)\frac{\partial\psi}{\partial z} + \dots + b_n(z)\frac{\partial^n\psi}{\partial z^n} = f(x)\psi.$$

In terms of differential operators:

• there are operators $D(x, \partial_x)$ and $B(z, \partial_z)$ with

$$D(x,\partial_x) \cdot \psi(x,z) = g(z)\psi(x,z)$$
$$B(z,\partial_z) \cdot \psi(x,z) = f(x)\psi(x,z).$$

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Bispectral Examples

Example

The function $\psi(x, z) = e^{xz}$ is bispectral since

$$rac{\partial \psi}{\partial x} = z\psi(x,z) ext{ and } rac{\partial \psi}{\partial z} = x\psi(x,z).$$

Example

The function $\psi(x, z) = e^{xz}(1 - x^{-1}z^{-1})$ is bispectral since

$$\frac{\partial^2 \psi}{\partial x^2} - \frac{2}{x^2} \psi = z^2 \psi.$$

$$\frac{\partial^2 \psi}{\partial z^2} - \frac{2}{z^2} \psi = x^2 \psi.$$

roving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Bispectral Examples

Example

The function $\psi(x, z) = e^{xz}$ is bispectral since

$$rac{\partial \psi}{\partial x} = z \psi(x,z) ext{ and } rac{\partial \psi}{\partial z} = x \psi(x,z).$$

Example

The function $\psi(x, z) = e^{xz}(1 - x^{-1}z^{-1})$ is bispectral since

$$\frac{\partial^2 \psi}{\partial x^2} - \frac{2}{x^2} \psi = z^2 \psi.$$

$$\frac{\partial^2 \psi}{\partial z^2} - \frac{2}{z^2} \psi = x^2 \psi.$$

Proving the Conjecture Future Directions Time and Band-Limiting Bispectrality

Bispectral Examples

The Airy function Ai(x) satisfies the Airy differential equation

 $\operatorname{Ai}''(x) = x\operatorname{Ai}(x).$

Example

The function $\psi(x, z) = Ai(x + z)$ is bispectral since

$$rac{\partial^2 \psi}{\partial x^2} - x \psi = z \psi$$
 and $rac{\partial^2 \psi}{\partial z^2} - z \psi = x \psi$

the acometry of commuting integral and Diferential Operators

Time and Band-Limiti Bispectrality

Interpretations of Bispectrality

Yuri Berest, Igor Krichever, George Wilson, ...

Future Directions

Time and Band-Limitir Bispectrality

Unifying Theory

Conjecture (Duistermaat-Grünbaum 1986)

For any sufficiently nice bispectral function $\psi(x, z)$ the integral operator

$$T(f)(x) = \int_{-s}^{s} K(x, y) f(y) dy$$

with kernel

$$K(x,y) = \int_{-r}^{r} \psi(x,z)\psi^{*}(y,z)dz$$

commutes with a nonconstant differential operator.

Commuting Integral and Differential Operators Proving the Conjecture Future Directions Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Outline

Commuting Integral and Differential Operators
 Time and Band-Limiting
 Pispectrality

- Bispectrality
- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof
- 3 Future Directions
 - Discrete Time and Band Limiting
 - Other Future Directions

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

The Spectral Curve

Definition

The **eigenvalues** of a differential operator $D(x, \partial_x)$ are the complex numbers λ with

 $D(x, \partial_x) \cdot f(x) = \lambda f(x)$, for some nonzero f(x).

Spectral Curve (compact, complex surface)

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

The Spectral Curve

Definition

 $D(x, \partial_x)$ is **bispectral** if for some bispectral $\psi(x, z)$

 $D(x,\partial_x)\cdot\psi(x,z)=g(z)\psi(x,z).$

 $D(x,\partial_x)$ bispectral \downarrow {eigenvalues of $D(x,\partial_x)$ } \rightarrow

(sphere with pinched point(s))

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Explicit Construction

Take $D(x, \partial_x)$ a differential operator.

- Schur 1905: the centralizer Z(D) of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent
- Using filtration by order to define

 $C = \operatorname{Proj}(\operatorname{Rees}(Z(D))) = \operatorname{Spec}(Z(D)) \cup \{\infty\},\$

$$\operatorname{Rees}(Z(D)) = \bigoplus_{n \ge 0} \{L \in Z(D) : \operatorname{order}(L) \le n\} t^n.$$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Explicit Construction

Take $D(x, \partial_x)$ a differential operator.

- Schur 1905: the centralizer Z(D) of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent
- Using filtration by order to define

 $C = \operatorname{Proj}(\operatorname{Rees}(Z(D))) = \operatorname{Spec}(Z(D)) \cup \{\infty\},\$

$$\operatorname{Rees}(Z(D)) = \bigoplus_{n \ge 0} \{L \in Z(D) : \operatorname{order}(L) \le n\} t^n.$$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

• • • • • • •

Explicit Construction

Take $D(x, \partial_x)$ a differential operator.

- Schur 1905: the centralizer Z(D) of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent

• Using filtration by order to define

 $C = \operatorname{Proj}(\operatorname{Rees}(Z(D))) = \operatorname{Spec}(Z(D)) \cup \{\infty\},\$

 $\operatorname{Rees}(Z(D)) = \bigoplus_{n \ge 0} \{L \in Z(D) : \operatorname{order}(L) \le n\} t^n.$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Explicit Construction

Take $D(x, \partial_x)$ a differential operator.

- Schur 1905: the centralizer Z(D) of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent
- Using filtration by order to define

$$C = \operatorname{Proj}(\operatorname{Rees}(Z(D))) = \operatorname{Spec}(Z(D)) \cup \{\infty\},\$$

$$\operatorname{\mathsf{Rees}}(Z(D)) = \bigoplus_{n \ge 0} \{L \in Z(D) : \operatorname{order}(L) \le n\} t^n.$$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Differential Operators on Spectral Curves

Big idea: consider differential operators on the spectral curve!

Definition

Let C be a spectral curve and let

 $\mathcal{A} = \{ \text{holomorphic functions } f : C \setminus \{ \infty \} \to \mathbb{C} \}.$

A differential operator on C is a transformation

$$R: \mathcal{A} \to \mathcal{A}, \ f(z) \mapsto R(f)(z)$$

which satisfies the Ad-condition.

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Differential Operators on Spectral Curves

Big idea: consider differential operators on the spectral curve!

Definition

Let C be a spectral curve and let

 $\mathcal{A} = \{ \text{holomorphic functions } f : C \setminus \{ \infty \} \to \mathbb{C} \}.$

A differential operator on C is a transformation

$$R: \mathcal{A} \to \mathcal{A}, f(z) \mapsto R(f)(z)$$

which satisfies the Ad-condition.

Ad-condition

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

(4) E (4) 4 E

Each $a(z) \in \mathcal{A}$ defines a differential operator

 $M_a: f(z) \mapsto a(z)f(z).$

Observation: if $R = R(z, \partial_z)$ is a differential operator

 $\operatorname{order}(\operatorname{Ad}_{M_a}^k(R)) \leq \operatorname{order}(R) - k.$

Definition

A linear transformation $R : A \to A$ satisfies the Ad-condition if there exists k > 0 with $\operatorname{Ad}_{M_a}^{k+1}(R) = 0$ for all $a \in A$.

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

.

Ad-condition

Each $a(z) \in A$ defines a differential operator

$$M_a: f(z) \mapsto a(z)f(z).$$

Observation: if $R = R(z, \partial_z)$ is a differential operator

$$\operatorname{order}(\operatorname{Ad}_{M_a}^k(R)) \leq \operatorname{order}(R) - k.$$

Definition

A linear transformation $R : A \to A$ satisfies the Ad-condition if there exists k > 0 with $\operatorname{Ad}_{M_a}^{k+1}(R) = 0$ for all $a \in A$.

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

4 B 6 4 B

Ad-condition

Each $a(z) \in A$ defines a differential operator

$$M_a: f(z) \mapsto a(z)f(z).$$

Observation: if $R = R(z, \partial_z)$ is a differential operator

$$\operatorname{order}(\operatorname{Ad}_{M_a}^k(R)) \leq \operatorname{order}(R) - k.$$

Definition

A linear transformation $R : A \to A$ satisfies the Ad-condition if there exists k > 0 with $\operatorname{Ad}_{M_a}^{k+1}(R) = 0$ for all $a \in A$.

Differential Operators on Spectral Curves

 $\psi(x, z)$ bispectral with operator $D(x, \partial_x)$ and spectral curve C

Theorem (Casper et al.)

Let $R = R(z, \partial_z)$ be a differential operator on *C*. Then there exists $L(x, \partial_x)$ with

$$L(x,\partial_x)\cdot\psi(x,z)=R(z,\partial_z)\cdot\psi(x,z).$$

Define the left and right Fourier algebras:

 $\mathcal{F}_{x}(\psi) = \{ D(x, \partial_{x}) : \text{ there exists } B(z, \partial_{z}) \text{ with } B \cdot \psi = D \cdot \psi \}.$

 $\mathcal{F}_z(\psi) = \{ B(z, \partial_z) : \text{ there exists } D(x, \partial_x) \text{ with } B \cdot \psi = D \cdot \psi \}.$

Differential Operators on Spectral Curves

 $\psi(x, z)$ bispectral with operator $D(x, \partial_x)$ and spectral curve C

Theorem (Casper et al.)

Let $R = R(z, \partial_z)$ be a differential operator on *C*. Then there exists $L(x, \partial_x)$ with

$$L(x,\partial_x)\cdot\psi(x,z)=R(z,\partial_z)\cdot\psi(x,z).$$

Define the left and right Fourier algebras:

 $\mathcal{F}_{x}(\psi) = \{ D(x, \partial_{x}) : \text{ there exists } B(z, \partial_{z}) \text{ with } B \cdot \psi = D \cdot \psi \}.$

 $\mathcal{F}_z(\psi) = \{ B(z, \partial_z) : \text{ there exists } D(x, \partial_x) \text{ with } B \cdot \psi = D \cdot \psi \}.$

• • • • • • •

Differential Operators on Spectral Curves

 $\psi(x, z)$ bispectral with operator $D(x, \partial_x)$ and spectral curve C

Theorem (Casper et al.)

Let $R = R(z, \partial_z)$ be a differential operator on *C*. Then there exists $L(x, \partial_x)$ with

$$L(x,\partial_x)\cdot\psi(x,z)=R(z,\partial_z)\cdot\psi(x,z).$$

Define the left and right Fourier algebras:

$$\mathcal{F}_{x}(\psi) = \{ D(x, \partial_{x}) : \text{ there exists } B(z, \partial_{z}) \text{ with } B \cdot \psi = D \cdot \psi \}.$$

 $\mathcal{F}_{z}(\psi) = \{ B(z, \partial_{z}) : \text{ there exists } D(x, \partial_{x}) \text{ with } B \cdot \psi = D \cdot \psi \}.$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Fourier algebra example

Consider the bispectral function $\psi(x, z) = e^{xz}$.

• $x\partial_x \in \mathcal{F}_x(\psi)$ because

 $x\partial_x \cdot \psi(x,z) = xze^{xz} = z\partial_z \cdot \psi(x,z).$

• in fact $x^m \partial_x^n \in \mathcal{F}_x(\psi)$ for all m, n > 0 because

 $x^m \partial_x^n \cdot \psi(x, z) = x^m z^n e^{xz} = z^n \partial_z^m \cdot \psi(x, z).$

 $\mathcal{F}_{x}(\psi) = \{ \text{differential operators with polynomial coefficients} \}.$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Fourier algebra example

Consider the bispectral function $\psi(x, z) = e^{xz}$.

• $x\partial_x \in \mathcal{F}_x(\psi)$ because

$$x\partial_x \cdot \psi(x,z) = xze^{xz} = z\partial_z \cdot \psi(x,z).$$

• in fact $x^m \partial_x^n \in \mathcal{F}_x(\psi)$ for all m, n > 0 because

$$x^{m}\partial_{x}^{n}\cdot\psi(x,z)=x^{m}z^{n}e^{xz}=z^{n}\partial_{z}^{m}\cdot\psi(x,z).$$

 $\mathcal{F}_{x}(\psi) = \{ \text{differential operators with polynomial coefficients} \}.$

A 3 1 A 3 1

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Fourier algebra example

Consider the bispectral function $\psi(x, z) = e^{xz}$.

• $x\partial_x \in \mathcal{F}_x(\psi)$ because

$$x\partial_x \cdot \psi(x,z) = xze^{xz} = z\partial_z \cdot \psi(x,z).$$

• in fact $x^m \partial_x^n \in \mathcal{F}_x(\psi)$ for all m, n > 0 because

$$x^m \partial_x^n \cdot \psi(x,z) = x^m z^n e^{xz} = z^n \partial_z^m \cdot \psi(x,z).$$

 $\mathcal{F}_{x}(\psi) = \{ \text{differential operators with polynomial coefficients} \}.$

A 3 1 A 3 1

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Fourier algebra example

Consider the bispectral function $\psi(x, z) = e^{xz}$.

• $x\partial_x \in \mathcal{F}_x(\psi)$ because

$$x\partial_x \cdot \psi(x,z) = xze^{xz} = z\partial_z \cdot \psi(x,z).$$

• in fact $x^m \partial_x^n \in \mathcal{F}_x(\psi)$ for all m, n > 0 because

$$x^m \partial_x^n \cdot \psi(x,z) = x^m z^n e^{xz} = z^n \partial_z^m \cdot \psi(x,z).$$

 $\mathcal{F}_{x}(\psi) = \{ \text{differential operators with polynomial coefficients} \}.$

(4) (2) (4) (3) (4)

Commuting Integral and Differential Operators Proving the Conjecture Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

$\mathcal{F}_{x}(\psi)$ is Really Big

Theorem (Casper et al.)

The subspace

$$\mathcal{F}^{\ell,m}_{x}(\psi) = \{ L(x,\partial_x) : B \cdot \psi = D \cdot \psi, \text{ order}(L) \leq \ell, \text{ order}(R) \leq m \}$$

has dimension

$$\dim(\mathcal{F}_x^{\ell,m}(\psi)) \geq (\ell+1)(m+1) - 2g_{diff}.$$

no acomony of commung integral and Emotorial operators

(4) (2) (4) (3) (4)

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Outline

Commuting Integral and Differential Operators
 Time and Band-Limiting

- Bispectrality
- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof
- 3 Future Directions
 - Discrete Time and Band Limiting
 - Other Future Directions

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Integration by Parts

Remember integration by parts:

$$\int_a^b f(x)g'(x)dx = f(x)g(x)|_a^b + \int_a^b -f'(x)g(x).$$

$$\int_{a}^{b} f(x)g''(x)dx = f(x)g'(x)|_{a}^{b} - \int_{a}^{b} f'(x)g'(x)dx$$
$$= [f(x)g'(x) - f'(x)g(x)]|_{a}^{b} + \int_{a}^{b} f''(x)g(x)dx$$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Integration by Parts

Remember integration by parts:

$$\int_a^b f(x)g'(x)dx = f(x)g(x)|_a^b + \int_a^b -f'(x)g(x).$$

$$\int_{a}^{b} f(x)g''(x)dx = f(x)g'(x)|_{a}^{b} - \int_{a}^{b} f'(x)g'(x)dx$$
$$= \left[f(x)g'(x) - f'(x)g(x)\right]|_{a}^{b} + \int_{a}^{b} f''(x)g(x)dx$$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

a strategy and

Integration by Parts

Remember integration by parts:

$$\int_{a}^{b} f(x)g'(x)dx = \overbrace{f(x)g(x)|_{a}^{b}}^{\text{concomitant}} + \overbrace{\int_{a}^{b} - f'(x)g(x)}^{\text{adjoint}}.$$

$$\int_{a}^{b} f(x)g''(x)dx = f(x)g'(x)|_{a}^{b} - \int_{a}^{b} f'(x)g'(x)dx$$
$$= \left[f(x)g'(x) - f'(x)g(x)\right]|_{a}^{b} + \int_{a}^{b} f''(x)g(x)dx$$

Commuting Integral and Differential Operators Proving the Conjecture Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Integration by Parts

Remember integration by parts:

$$\int_{a}^{b} f(x)g'(x)dx = \overbrace{f(x)g(x)|_{a}^{b}}^{\text{concomitant}} + \overbrace{\int_{a}^{b} - f'(x)g(x)}^{\text{adjoint}}.$$

$$\int_{a}^{b} f(x)g''(x)dx = f(x)g'(x)|_{a}^{b} - \int_{a}^{b} f'(x)g'(x)dx$$

$$= \underbrace{f(x)g'(x) - f'(x)g(x)|_{a}^{b}}_{\text{concomitant}} + \underbrace{\int_{a}^{b} f''(x)g(x)dx}_{\text{adjoint}}$$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Adjoints of Differential Operators

Definition

For any differential operator

$$D(x,\partial_x) = a_0(x) + a_1(x)\partial_x + a_2(x)\partial_x^2 \cdots + a_n(x)\partial_x^n$$

The formal adjoint is

$$D^*(x,\partial_x) = a_0(x) - \partial_x a_1(x) + \partial_x^2 a_2(x) + \cdots + (-1)^n \partial_x^n a_n(x).$$

For example, if $D(x, \partial_x) = x^2 \partial_x$ then

$$D^*(x,\partial_x) = -\partial_x x^2 = -x^2 \partial_x - 2x.$$

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Adjoints of Differential Operators

Definition

For any differential operator

$$D(x,\partial_x) = a_0(x) + a_1(x)\partial_x + a_2(x)\partial_x^2 \cdots + a_n(x)\partial_x^n$$

The formal adjoint is

$$D^*(x,\partial_x) = a_0(x) - \partial_x a_1(x) + \partial_x^2 a_2(x) + \cdots + (-1)^n \partial_x^n a_n(x).$$

For example, if $D(x, \partial_x) = x^2 \partial_x$ then

$$D^*(x,\partial_x) = -\partial_x x^2 = -x^2 \partial_x - 2x.$$

to deemetry of commuting integral and Differential Operators

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Super Integration by Parts

If $D(x, \partial_x)$ is a differential operator

$$\int_{a}^{b} f(x)D(x,\partial_{x}) \cdot g(x)dx = C_{D}(f,g;b) - C_{D}(f,g;a) + \int_{a}^{b} g(x)D^{*}(x,\partial_{x}) \cdot f(x)dx$$

Here $C_D(f, g; b)$ is the **bilinear concomitant**, defined by:

- $D(x,\partial_x)$
- the derivatives of f(x) and g(x) at the point *b*

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Outline

Commuting Integral and Differential Operators

Time and Band-Limiting

- Bispectrality
- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof

3 Future Directions

- Discrete Time and Band Limiting
- Other Future Directions

Main Theorem

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

4 B 6 4 B

Theorem (Casper-Yakimov 2019)

Let $\psi(x, z)$ be a self-adjoint, rank 1 bispectral function. Then the integral operator

$$T(f)(x) = \int_{-s}^{s} K(x, y) f(y) dy,$$

with kernel

$$K(x,y) = \int_{-r}^{r} \psi(x,z)\psi(y,z)dz$$

commutes with a nonconstant differential operator in $\mathcal{F}_{x}(\psi)$.

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Proof Sketch

• Choose $D(x, \partial_x)$ and $B(z, \partial_z)$ with $D \cdot \psi = B \cdot \psi$ so

• they are **self-adjoint**:

 $D(x,\partial_x) = D^*(x,\partial_x)$ and $B(z,\partial_z) = B^*(z,\partial_z)$

• the concomitants of D vanish

 $C_D(f,g;\pm s) = 0$ for all f(x), g(x)

• the concomitants of *B* also vanish

 $C_B(f, g; \pm r) = 0$ for all f(z), g(z)

不得下 イヨト イヨ

W.R. Casper

 Commuting Integral and Differential Operators
 Geometry of Differential Operators

 Proving the Conjecture
 Adjoints of Differential Operators

 Future Directions
 Sketch of Proof

Proof Sketch

ep

Choose $D(x, \partial_x)$ and $B(z, \partial_z)$ with $D \cdot \psi = B \cdot \psi$ so • they are **self-adjoint**:

$$D(x,\partial_x) = D^*(x,\partial_x)$$
 and $B(z,\partial_z) = B^*(z,\partial_z)$

• the concomitants of D vanish

$$C_D(f, g; \pm s) = 0$$
 for all $f(x), g(x)$

• the concomitants of B also vanish

 $C_B(f, g; \pm r) = 0$ for all f(z), g(z)

 Commuting Integral and Differential Operators
 Geometry of Differential Operators

 Proving the Conjecture
 Adjoints of Differential Operators

 Future Directions
 Sketch of Proof

Proof Sketch

ep

Choose $D(x, \partial_x)$ and $B(z, \partial_z)$ with $D \cdot \psi = B \cdot \psi$ so • they are **self-adjoint**:

$$D(x,\partial_x) = D^*(x,\partial_x)$$
 and $B(z,\partial_z) = B^*(z,\partial_z)$

• the concomitants of D vanish

$$C_D(f, g; \pm s) = 0$$
 for all $f(x), g(x)$

• the concomitants of B also vanish

 $C_B(f, g; \pm r) = 0$ for all f(z), g(z)

 Commuting Integral and Differential Operators
 Geometry of Differential Operators

 Proving the Conjecture
 Adjoints of Differential Operators

 Future Directions
 Sketch of Proof

Proof Sketch

ep

Choose $D(x, \partial_x)$ and $B(z, \partial_z)$ with $D \cdot \psi = B \cdot \psi$ so • they are **self-adjoint**:

$$D(x,\partial_x) = D^*(x,\partial_x)$$
 and $B(z,\partial_z) = B^*(z,\partial_z)$

• the concomitants of D vanish

$$C_D(f, g; \pm s) = 0$$
 for all $f(x), g(x)$

• the concomitants of B also vanish

$$C_B(f,g;\pm r) = 0$$
 for all $f(z), g(z)$

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Use Super Integration by Parts!

$$D(x,\partial_x) \cdot K(x,y) = \int_{-r}^{r} D(x,\partial_x) \cdot \psi(x,z)\psi(y,z)dz$$

= $\int_{-r}^{r} B(z,\partial_z) \cdot \psi(x,z)\psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)B(z,\partial_z) \cdot \psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)D(y,\partial_y) \cdot \psi(y,z)dz = D(y,\partial_y) \cdot K(x,y)$

B b 4

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Use Super Integration by Parts!

$$D(x,\partial_x) \cdot K(x,y) = \int_{-r}^{r} D(x,\partial_x) \cdot \psi(x,z)\psi(y,z)dz$$

= $\int_{-r}^{r} B(z,\partial_z) \cdot \psi(x,z)\psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)B(z,\partial_z) \cdot \psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)D(y,\partial_y) \cdot \psi(y,z)dz = D(y,\partial_y) \cdot K(x,y)$

B b 4

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Use Super Integration by Parts!

$$D(x,\partial_x) \cdot K(x,y) = \int_{-r}^{r} D(x,\partial_x) \cdot \psi(x,z)\psi(y,z)dz$$

= $\int_{-r}^{r} B(z,\partial_z) \cdot \psi(x,z)\psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)B(z,\partial_z) \cdot \psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)D(y,\partial_y) \cdot \psi(y,z)dz = D(y,\partial_y) \cdot K(x,y)$

B b 4

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

B b 4

$$D(x,\partial_x) \cdot K(x,y) = \int_{-r}^{r} D(x,\partial_x) \cdot \psi(x,z)\psi(y,z)dz$$

= $\int_{-r}^{r} B(z,\partial_z) \cdot \psi(x,z)\psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)B(z,\partial_z) \cdot \psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)D(y,\partial_y) \cdot \psi(y,z)dz = D(y,\partial_y) \cdot K(x,y)$

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

B b 4

$$D(x,\partial_x) \cdot K(x,y) = \int_{-r}^{r} D(x,\partial_x) \cdot \psi(x,z)\psi(y,z)dz$$

= $\int_{-r}^{r} B(z,\partial_z) \cdot \psi(x,z)\psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)B(z,\partial_z) \cdot \psi(y,z)dz$
= $\int_{-r}^{r} \psi(x,z)D(y,\partial_y) \cdot \psi(y,z)dz = D(y,\partial_y) \cdot K(x,y)$

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

$$D(x,\partial_x) \cdot T(f)(x) = \int_{-s}^{s} D(x,\partial_x) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} D(y,\partial_y) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} K(x,y)D(y,\partial_y) \cdot f(y)dy$$
$$= T(D \cdot f)(x)$$

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

4 E > 4

$$D(x,\partial_x) \cdot T(f)(x) = \int_{-s}^{s} D(x,\partial_x) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} D(y,\partial_y) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} K(x,y)D(y,\partial_y) \cdot f(y)dy$$
$$= T(D \cdot f)(x)$$

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

4 B M 4

$$D(x,\partial_x) \cdot T(f)(x) = \int_{-s}^{s} D(x,\partial_x) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} D(y,\partial_y) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} K(x,y)D(y,\partial_y) \cdot f(y)dy$$
$$= T(D \cdot f)(x)$$

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

$$D(x,\partial_x) \cdot T(f)(x) = \int_{-s}^{s} D(x,\partial_x) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} D(y,\partial_y) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} K(x,y)D(y,\partial_y) \cdot f(y)dy$$
$$= T(D \cdot f)(x)$$

Proof Sketch

Geometry of Differential Operators Adjoints of Differential Operators Sketch of Proof

Use Super Integration by Parts again!

$$D(x,\partial_x) \cdot T(f)(x) = \int_{-s}^{s} D(x,\partial_x) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} D(y,\partial_y) \cdot K(x,y)f(y)dy$$
$$= \int_{-s}^{s} K(x,y)D(y,\partial_y) \cdot f(y)dy$$
$$= T(D \cdot f)(x)$$

E > 4

Discrete Time and Band Limiting Other Future Directions

Outline

Commuting Integral and Differential Operators
 Time and Band-Limiting
 Bispectrality

- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof

3 Future Directions

- Discrete Time and Band Limiting
- Other Future Directions

Discrete Time and Band Limiting Other Future Directions

Discrete Examples

Idea:

• replace T with a matrix which acts like an integral operator

 $N \times N$ Hankel matrix $H_{ij} = h(i + j)$.

• replace *D* with a matrix which acts like a differential operator

 $N \times N$ tri-diagonal $B_{ij} = 0$ for |i - j| > 1.

Question

Can we find interesting families of Hankel matrices commuting with band matrices?

Discrete Time and Band Limiting Other Future Directions

Discrete Examples

Idea:

• replace T with a matrix which acts like an integral operator

 $N \times N$ Hankel matrix $H_{ij} = h(i+j)$.

replace D with a matrix which acts like a differential operator

 $N \times N$ tri-diagonal $B_{ij} = 0$ for |i - j| > 1.

Question

Can we find interesting families of Hankel matrices commuting with band matrices?

Discrete Time and Band Limiting Other Future Directions

Discrete Examples

Idea:

• replace T with a matrix which acts like an integral operator

 $N \times N$ Hankel matrix $H_{ij} = h(i+j)$.

replace D with a matrix which acts like a differential operator

 $N \times N$ tri-diagonal $B_{ij} = 0$ for |i - j| > 1.

Question

Can we find interesting families of Hankel matrices commuting with band matrices?

Discrete Time and Band Limiting Other Future Directions

Hilbert Matrix Example

The $N \times N$ Hilbert matrix is

$$H_{ij}=\frac{1}{i+j+\mu}, \ 1\leq i,j\leq N.$$

It commutes with a special tridiagonal matrix

$$B_{ij} = \begin{cases} -2(N-i)(N+i+\lambda)(i^2+(i-1)\lambda-n), & i=j\\ i(N-i)(1+i+\lambda)(N+1+i+\lambda), & j=i+1\\ B_{ji}, & i=j+1 \end{cases}$$

Discrete Time and Band Limiting Other Future Directions

Hilbert Matrix Example

The $N \times N$ Hilbert matrix is

$$H_{ij}=\frac{1}{i+j+\mu}, \ 1\leq i,j\leq N.$$

It commutes with a special tridiagonal matrix

$$B_{ij} = \begin{cases} -2(N-i)(N+i+\lambda)(i^2+(i-1)\lambda-n), & i=j\\ i(N-i)(1+i+\lambda)(N+1+i+\lambda), & j=i+1\\ B_{ji}, & i=j+1 \end{cases}$$

Discrete Time and Band Limiting Other Future Directions

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the **eigenvectors** of the $N \times N$ Hilbert matrix *H*:

find \vec{v} with $H\vec{v} = \lambda \vec{v}$ for some \vec{v} .

- Idea: H and B have the same eigenvectors
- Calculating the eigenvectors of *B* is much easier!

Discrete Time and Band Limiting Other Future Directions

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the **eigenvectors** of the $N \times N$ Hilbert matrix *H*:

find \vec{v} with $H\vec{v} = \lambda \vec{v}$ for some \vec{v} .

- Idea: H and B have the same eigenvectors
- Calculating the eigenvectors of *B* is much easier!

Discrete Time and Band Limiting Other Future Directions

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the **eigenvectors** of the $N \times N$ Hilbert matrix *H*:

find \vec{v} with $H\vec{v} = \lambda \vec{v}$ for some \vec{v} .

- Idea: H and B have the same eigenvectors
- Calculating the eigenvectors of *B* is much easier!

Discrete Time and Band Limiting Other Future Directions

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the **eigenvectors** of the $N \times N$ Hilbert matrix *H*:

find \vec{v} with $H\vec{v} = \lambda \vec{v}$ for some \vec{v} .

- Idea: H and B have the same eigenvectors
- Calculating the eigenvectors of *B* is much easier!

Discrete Time and Band Limiting Other Future Directions

Application: Eigenvectors of the Hilbert Matrix

W.R. Casper

no acomony of commung integral and Emotorial operators

Discrete Time and Band Limiting Other Future Directions

Outline

Commuting Integral and Differential Operators
 Time and Band-Limiting
 Bispectrality

- Proving the Conjecture
 - Geometry of Differential Operators
 - Adjoints of Differential Operators
 - Sketch of Proof

3 Future Directions

- Discrete Time and Band Limiting
- Other Future Directions

Future Work

- numerical approximation of eigenfunctions for integral operators
- a dynamics of Calogero-Moser spaces
- orthogonal polynomials
- 🕘 higher dimensional analogs
- oncommutative analogs
- 6 derived equivalence

Future Work

- numerical approximation of eigenfunctions for integral operators
- Ø dynamics of Calogero-Moser spaces
- orthogonal polynomials
- 🕘 higher dimensional analogs
- Inoncommutative analogs
- 6 derived equivalence

Future Work

- numerical approximation of eigenfunctions for integral operators
- Ø dynamics of Calogero-Moser spaces
- orthogonal polynomials
- 🕘 higher dimensional analogs
- Inoncommutative analogs
- 6 derived equivalence

Future Work

Discrete Time and Band Limiting Other Future Directions

- numerical approximation of eigenfunctions for integral operators
- Ø dynamics of Calogero-Moser spaces
- orthogonal polynomials
- 4 higher dimensional analogs
- Inoncommutative analogs
- derived equivalence

ne deemetry of commuting integral and Emercinital operators

Future Work

- numerical approximation of eigenfunctions for integral operators
- Ø dynamics of Calogero-Moser spaces
- orthogonal polynomials
- higher dimensional analogs
- on noncommutative analogs
- 6 derived equivalence

Future Work

- numerical approximation of eigenfunctions for integral operators
- Ø dynamics of Calogero-Moser spaces
- orthogonal polynomials
- higher dimensional analogs
- oncommutative analogs
- derived equivalence

Thank You!

Discrete Time and Band Limiting Other Future Directions

• • • • • • •

- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423.
- Duistermaat, J. J., and Grünbaum, F. A. (1986). Differential equations in the spectral parameter. Communications in Mathematical Physics, 103(2), 177-240.
- Casper, W. R., and Yakimov, M. T. (2019). *Integral operators, bispectrality and growth of Fourier algebras*. Journal Für Die Reine und Angewandte Mathematik (Crelles Journal).
- Casper, W. R., Grünbaum, F. A., Yakimov, M., and Zurrián, I. (2019). *Reflective prolate-spheroidal operators and the KP/KdV equations*. Proceedings of the National Academy of Sciences, 116(37), 18310-18315.