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A Problem from Mathematical Communication Theory

Figure: Claude Shannon

Problem (Shannon 1948)
What is the best quality of information that
can be conveyed over a phone line?

Our Mathematical Model
1 information: function of time f (t)
2 convert to amplitudes and frequencies

to send over the line
3 convert back at the other end

Noise limits the frequencies [−κ, κ] we can communicate, and
the call duration τ limits the time.
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Integral Operators

Our model is expressed mathematically as an integral operator.

Definition
A integral operator is a transformation T taking a function f (x)
to a new function

T (f )(x) =
∫ b

a
K (x , y)f (y)dy ,

where here K (x , y) is a function of two variables called the
kernel of T .

Important examples: Fourier transform and Laplace transform
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Time and Band-Limiting Operator

Communicating f (t) over the phone line is the same as:

T (f )(t) =
∫ τ

0

sin(2πκ(t − s))
π(t − s)

f (s)ds, 0 ≤ t ≤ τ.

This is called a time and band-limiting operator.

(a) f (t) = 1 (b) T (f )(t), when κ = 10/τ
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Time and Band-Limiting Operator

Communicating f (t) over the phone line is the same as:

T (f )(t) =
∫ τ

0

sin(2πκ(t − s))
π(t − s)

f (s)ds, 0 ≤ t ≤ τ.

This is called a time and band-limiting operator.

(a) f (t) = 1 (b) T (f )(t), when κ = 50/τ
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Time and Band-Limiting Operator

Communicating f (t) over the phone line is the same as:

T (f )(t) =
∫ τ

0

sin(2πκ(t − s))
π(t − s)

f (s)ds, 0 ≤ t ≤ τ.

This is called a time and band-limiting operator.

(a) f (t) = 1 (b) T (f )(t), when κ = 100/τ
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Shannon’s Problem

Problem (Shannon)

Can we come up with a way to recover f back from T (f ) for
some functions?

Yes, for eigenfunctions of T !

Definition
An eigenfunction of T is a function f (t) satisfying

T (f )(t) = λf (t), for some λ ∈ C.

Shannon’s problem: find the eigenfunctions
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Fast-forward 20 years

the problem is solved by Landau, Pollak, and Slepian!

Definition
A differential operator

D(x , ∂x) = a0(x) + a1(x)∂x + · · ·+ an(x)∂n
x

is a transformation taking a function f (x) to a new function

D(f )(x) = a0(x)f (x)+a1(x)f ′(x)+a2(x)f ′′(x)+· · ·+an(x)f (n)(x).

Example

D(x , ∂x) = x∂2
x + 2x means D(f )(x) = xf ′′(x) + 2xf (x).
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Commuting Operators

Theorem (Landau-Pollak and Pollak-Slepian)

The differential operator D(x , ∂x) = (κ2 − x2)∂2
x − 2x∂x + τ2x2

commutes with Shannon’s time and band-limiting operator T :

T (D(f ))(x) = D(T (f ))(x).

Consequence: T and D will have to share eigenfunctions.

T (f )(x) = λf (x) if and only if D(f )(x) = µf (x)

Just solve the differential equation

(κ2 − x2)f ′′(x)− 2xf ′(x) + τ2x2f (x) = µf (x).
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More Examples are Found

Question
More commuting integral and differential
operators?

Slepian 1960’s
1 examples from spherical harmonics
2 extensions to n dimensions

Tracy and Widom 1990’s
1 examples from random matrix theory
2 defined by Airy and Bessel functions
3 2020 Steele prize

Figure: David Slepian

Figure: Craig Tracy and
Harold Widom
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Unifying Theory

Examples arise naturally in diverse areas!

Question
Can we find a unifying theory or construction?

Observation by Duistermaat and Grünbaum (1986):
the integral operators found all have very special kernels

K (x , y) =
∫ r

−r
ψ(x , z)ψ∗(y , z)dz

where ψ(x , z) is a special kind of function called a
bispectral function.
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Bispectral functions

Definition
A function ψ(x , z) is bispectral if it simultaneously satisfies two
differential equations

a0(x)ψ + a1(x)
∂ψ

∂x
+ · · ·+ am(x)

∂mψ

∂xm = g(z)ψ.

b0(z)ψ + b1(z)
∂ψ

∂z
+ · · ·+ bn(z)

∂nψ

∂zn = f (x)ψ.

In terms of differential operators:
there are operators D(x , ∂x) and B(z, ∂z) with

D(x , ∂x) · ψ(x , z) = g(z)ψ(x , z)

B(z, ∂z) · ψ(x , z) = f (x)ψ(x , z).
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Bispectral Examples

Example

The function ψ(x , z) = exz is bispectral since

∂ψ

∂x
= zψ(x , z) and

∂ψ

∂z
= xψ(x , z).

Example

The function ψ(x , z) = exz(1− x−1z−1) is bispectral since

∂2ψ

∂x2 −
2
x2ψ = z2ψ.

∂2ψ

∂z2 −
2
z2ψ = x2ψ.

W.R. Casper
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Bispectral Examples

The Airy funtion Ai(x) satisfies the Airy differential equation

Ai′′(x) = xAi(x).

Example

The function ψ(x , z) = Ai(x + z) is bispectral since

∂2ψ

∂x2 − xψ = zψ and
∂2ψ

∂z2 − zψ = xψ
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Interpretations of Bispectrality

Yuri Berest, Igor Krichever, George Wilson, ...
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Unifying Theory

Conjecture (Duistermaat-Grünbaum 1986)

For any sufficiently nice bispectral function ψ(x , z) the integral
operator

T (f )(x) =
∫ s

−s
K (x , y)f (y)dy

with kernel

K (x , y) =
∫ r

−r
ψ(x , z)ψ∗(y , z)dz

commutes with a nonconstant differential operator.
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The Spectral Curve

Definition
The eigenvalues of a differential operator D(x , ∂x) are the
complex numbers λ with

D(x , ∂x) · f (x) = λf (x), for some nonzero f (x).

D(x , ∂x)

��
{eigenvalues of D(x , ∂x)} → Spectral Curve

(compact, complex surface)
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The Spectral Curve

Definition
D(x , ∂x) is bispectral if for some bispectral ψ(x , z)

D(x , ∂x) · ψ(x , z) = g(z)ψ(x , z).

D(x , ∂x) bispectral

��
{eigenvalues of D(x , ∂x)} →

Balloon-like surface
(sphere with pinched point(s))
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Explicit Construction

Take D(x , ∂x) a differential operator.
Schur 1905: the centralizer Z (D) of D is commutative
Burchnall-Chaundy 1929: commuting differential operators
are algebraically dependent
Using filtration by order to define

C = Proj(Rees(Z (D))) = Spec(Z (D)) ∪ {∞},

Rees(Z (D)) =
⊕
n≥0

{L ∈ Z (D) : order(L) ≤ n}tn.
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Differential Operators on Spectral Curves

Big idea: consider differential operators on the spectral curve!

Definition
Let C be a spectral curve and let

A = {holomorphic functions f : C\{∞} → C}.

A differential operator on C is a transformation

R : A → A, f (z) 7→ R(f )(z)

which satisfies the Ad-condition.
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Ad-condition

Each a(z) ∈ A defines a differential operator

Ma : f (z) 7→ a(z)f (z).

Observation: if R = R(z, ∂z) is a differential operator

order(Adk
Ma

(R)) ≤ order(R)− k .

Definition
A linear transformation R : A → A satisfies the Ad-condition if
there exists k > 0 with Adk+1

Ma
(R) = 0 for all a ∈ A.

W.R. Casper
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order(Adk
Ma

(R)) ≤ order(R)− k .

Definition
A linear transformation R : A → A satisfies the Ad-condition if
there exists k > 0 with Adk+1

Ma
(R) = 0 for all a ∈ A.
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Differential Operators on Spectral Curves

ψ(x , z) bispectral with operator D(x , ∂x) and spectral curve C

Theorem (Casper et al.)

Let R = R(z, ∂z) be a differential operator on C. Then there
exists L(x , ∂x) with

L(x , ∂x) · ψ(x , z) = R(z, ∂z) · ψ(x , z).

Define the left and right Fourier algebras:

Fx(ψ) = {D(x , ∂x) : there exists B(z, ∂z) with B · ψ = D · ψ}.

Fz(ψ) = {B(z, ∂z) : there exists D(x , ∂x) with B · ψ = D · ψ}.
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Fourier algebra example

Consider the bispectral function ψ(x , z) = exz .
x∂x ∈ Fx(ψ) because

x∂x · ψ(x , z) = xzexz = z∂z · ψ(x , z).

in fact xm∂n
x ∈ Fx(ψ) for all m,n > 0 because

xm∂n
x · ψ(x , z) = xmznexz = zn∂m

z · ψ(x , z).

Fx(ψ) = {differential operators with polynomial coefficients}.

W.R. Casper
The Geometry of Commuting Integral and Differential Operators



Commuting Integral and Differential Operators
Proving the Conjecture

Future Directions

Geometry of Differential Operators
Adjoints of Differential Operators
Sketch of Proof

Fourier algebra example

Consider the bispectral function ψ(x , z) = exz .
x∂x ∈ Fx(ψ) because

x∂x · ψ(x , z) = xzexz = z∂z · ψ(x , z).

in fact xm∂n
x ∈ Fx(ψ) for all m,n > 0 because

xm∂n
x · ψ(x , z) = xmznexz = zn∂m

z · ψ(x , z).

Fx(ψ) = {differential operators with polynomial coefficients}.

W.R. Casper
The Geometry of Commuting Integral and Differential Operators



Commuting Integral and Differential Operators
Proving the Conjecture

Future Directions

Geometry of Differential Operators
Adjoints of Differential Operators
Sketch of Proof

Fourier algebra example

Consider the bispectral function ψ(x , z) = exz .
x∂x ∈ Fx(ψ) because

x∂x · ψ(x , z) = xzexz = z∂z · ψ(x , z).

in fact xm∂n
x ∈ Fx(ψ) for all m,n > 0 because

xm∂n
x · ψ(x , z) = xmznexz = zn∂m

z · ψ(x , z).

Fx(ψ) = {differential operators with polynomial coefficients}.

W.R. Casper
The Geometry of Commuting Integral and Differential Operators



Commuting Integral and Differential Operators
Proving the Conjecture

Future Directions

Geometry of Differential Operators
Adjoints of Differential Operators
Sketch of Proof

Fourier algebra example

Consider the bispectral function ψ(x , z) = exz .
x∂x ∈ Fx(ψ) because

x∂x · ψ(x , z) = xzexz = z∂z · ψ(x , z).

in fact xm∂n
x ∈ Fx(ψ) for all m,n > 0 because

xm∂n
x · ψ(x , z) = xmznexz = zn∂m

z · ψ(x , z).

Fx(ψ) = {differential operators with polynomial coefficients}.

W.R. Casper
The Geometry of Commuting Integral and Differential Operators



Commuting Integral and Differential Operators
Proving the Conjecture

Future Directions

Geometry of Differential Operators
Adjoints of Differential Operators
Sketch of Proof

Fx(ψ) is Really Big

Theorem (Casper et al.)
The subspace

F `,mx (ψ) = {L(x , ∂x) : B·ψ = D·ψ, order(L) ≤ `, order(R) ≤ m}

has dimension

dim(F `,mx (ψ)) ≥ (`+ 1)(m + 1)− 2gdiff.
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Integration by Parts

Remember integration by parts:∫ b

a
f (x)g′(x)dx = f (x)g(x)|ba +

∫ b

a
−f ′(x)g(x).

A more complicated example:∫ b

a
f (x)g′′(x)dx = f (x)g′(x)|ba −

∫ b

a
f ′(x)g′(x)dx

=
[
f (x)g′(x)− f ′(x)g(x)

]
|ba +

∫ b

a
f ′′(x)g(x)dx
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Adjoints of Differential Operators

Definition
For any differential operator

D(x , ∂x) = a0(x) + a1(x)∂x + a2(x)∂2
x · · ·+ an(x)∂n

x

The formal adjoint is

D∗(x , ∂x) = a0(x)− ∂xa1(x) + ∂2
x a2(x) + · · ·+ (−1)n∂n

x an(x).

For example, if D(x , ∂x) = x2∂x then

D∗(x , ∂x) = −∂xx2 = −x2∂x − 2x .
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Super Integration by Parts

If D(x , ∂x) is a differential operator∫ b

a
f (x)D(x , ∂x) · g(x)dx = CD(f ,g;b)− CD(f ,g;a)

+

∫ b

a
g(x)D∗(x , ∂x) · f (x)dx

Here CD(f ,g;b) is the bilinear concomitant, defined by:
D(x , ∂x)

the derivatives of f (x) and g(x) at the point b
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Main Theorem

Theorem (Casper-Yakimov 2019)

Let ψ(x , z) be a self-adjoint, rank 1 bispectral function. Then
the integral operator

T (f )(x) =
∫ s

−s
K (x , y)f (y)dy ,

with kernel

K (x , y) =
∫ r

−r
ψ(x , z)ψ(y , z)dz

commutes with a nonconstant differential operator in Fx(ψ).
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Proof Sketch

Step 1: Choose D(x , ∂x) and B(z, ∂z) with D · ψ = B · ψ so
they are self-adjoint:

D(x , ∂x) = D∗(x , ∂x) and B(z, ∂z) = B∗(z, ∂z)

the concomitants of D vanish

CD(f ,g;±s) = 0 for all f (x),g(x)

the concomitants of B also vanish

CB(f ,g;±r) = 0 for all f (z),g(z)
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Proof Sketch

Step 2: Use Super Integration by Parts!

D(x , ∂x) · K (x , y) =
∫ r

−r
D(x , ∂x) · ψ(x , z)ψ(y , z)dz

=

∫ r

−r
B(z, ∂z) · ψ(x , z)ψ(y , z)dz

=

∫ r

−r
ψ(x , z)B(z, ∂z) · ψ(y , z)dz

=

∫ r

−r
ψ(x , z)D(y , ∂y ) · ψ(y , z)dz = D(y , ∂y ) · K (x , y)
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Proof Sketch

Step 3: Use Super Integration by Parts again!

D(x , ∂x) · T (f )(x) =
∫ s

−s
D(x , ∂x) · K (x , y)f (y)dy

=

∫ s

−s
D(y , ∂y ) · K (x , y)f (y)dy

=

∫ s

−s
K (x , y)D(y , ∂y ) · f (y)dy

= T (D · f )(x)
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Discrete Examples

Idea:
replace T with a matrix which acts like an integral operator

N × N Hankel matrix Hij = h(i + j).

replace D with a matrix which acts like a differential
operator

N × N tri-diagonal Bij = 0 for |i − j | > 1.

Question
Can we find interesting families of Hankel matrices commuting
with band matrices?
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with band matrices?
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Hilbert Matrix Example

The N × N Hilbert matrix is

Hij =
1

i + j + µ
, 1 ≤ i , j ≤ N.

It commutes with a special tridiagonal matrix

Bij =


−2(N − i)(N + i + λ)(i2 + (i − 1)λ− n), i = j

i(N − i)(1 + i + λ)(N + 1 + i + λ), j = i + 1

Bji , i = j + 1

W.R. Casper
The Geometry of Commuting Integral and Differential Operators



Commuting Integral and Differential Operators
Proving the Conjecture

Future Directions

Discrete Time and Band Limiting
Other Future Directions

Hilbert Matrix Example

The N × N Hilbert matrix is

Hij =
1

i + j + µ
, 1 ≤ i , j ≤ N.

It commutes with a special tridiagonal matrix

Bij =


−2(N − i)(N + i + λ)(i2 + (i − 1)λ− n), i = j

i(N − i)(1 + i + λ)(N + 1 + i + λ), j = i + 1

Bji , i = j + 1

W.R. Casper
The Geometry of Commuting Integral and Differential Operators



Commuting Integral and Differential Operators
Proving the Conjecture

Future Directions

Discrete Time and Band Limiting
Other Future Directions

Application: Eigenvectors of the Hilbert Matrix

Problem
Find the eigenvectors of the N × N Hilbert matrix H:

find ~v with H~v = λ~v for some ~v .

Numerically ill-posed!
Idea: H and B have the same eigenvectors
Calculating the eigenvectors of B is much easier!
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Future Work

1 numerical approximation of eigenfunctions for integral
operators

2 dynamics of Calogero-Moser spaces
3 orthogonal polynomials
4 higher dimensional analogs
5 noncommutative analogs
6 derived equivalence
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Thank You!
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