The Geometry of Commuting Integral and Differential Operators

California State University Fullerton, January 2020

W.R. Casper

Department of Mathematics
Louisiana State University

February 4, 2020

Outline

(1) Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

Outline

(1) Commuting Integral and Differential Operators - Time and Band-Limiting

- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

A Problem from Mathematical Communication Theory

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model

(1) information: function of time $f(t)$
convert to amplitudes and frequencies
to send over the line
(3) convert back at the other end

A Problem from Mathematical Communication Theory

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model
(1) information: function of time $f(t)$
(2) convert to amplitudes and frequencies to send over the line
(3) convert back at the other end

A Problem from Mathematical Communication Theory

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model
(1) information: function of time $f(t)$
(2) convert to amplitudes and frequencies to send over the line
(3) convert back at the other end

Noise limits the frequencies $[-\kappa, \kappa]$ we can communicate, and
the call duration τ limits the time.

A Problem from Mathematical Communication Theory

Figure: Claude Shannon

Problem (Shannon 1948)

What is the best quality of information that can be conveyed over a phone line?

Our Mathematical Model
(1) information: function of time $f(t)$
(2) convert to amplitudes and frequencies to send over the line
(3) convert back at the other end

Noise limits the frequencies $[-\kappa, \kappa]$ we can communicate, and the call duration τ limits the time.

Integral Operators

Our model is expressed mathematically as an integral operator.
Definition
A integral operator is a transformation T taking a function $f(x)$
to a new function

where here $K(x, y)$ is a function of two variables called the kernel of T.

Important examples: Fourier transform and Laplace transform

Integral Operators

Our model is expressed mathematically as an integral operator.

Definition

A integral operator is a transformation T taking a function $f(x)$ to a new function

$$
T(f)(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

where here $K(x, y)$ is a function of two variables called the kernel of T.

Important examples: Fourier transform and Laplace transform

Integral Operators

Our model is expressed mathematically as an integral operator.

Definition

A integral operator is a transformation T taking a function $f(x)$ to a new function

$$
T(f)(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

where here $K(x, y)$ is a function of two variables called the kernel of T.

Important examples: Fourier transform and Laplace transform

Time and Band-Limiting Operator

Communicating $f(t)$ over the phone line is the same as:

$$
T(f)(t)=\int_{0}^{\tau} \frac{\sin (2 \pi \kappa(t-s))}{\pi(t-s)} f(s) d s, \quad 0 \leq t \leq \tau
$$

This is called a time and band-limiting operator.

(a) $f(t)=1$
(b) $T(f)(t)$, when $\kappa=10 / \tau$

Time and Band-Limiting Operator

Communicating $f(t)$ over the phone line is the same as:

$$
T(f)(t)=\int_{0}^{\tau} \frac{\sin (2 \pi \kappa(t-s))}{\pi(t-s)} f(s) d s, \quad 0 \leq t \leq \tau
$$

This is called a time and band-limiting operator.

(a) $f(t)=1$
(b) $T(f)(t)$, when $\kappa=50 / \tau$

Time and Band-Limiting Operator

Communicating $f(t)$ over the phone line is the same as:

$$
T(f)(t)=\int_{0}^{\tau} \frac{\sin (2 \pi \kappa(t-s))}{\pi(t-s)} f(s) d s, \quad 0 \leq t \leq \tau
$$

This is called a time and band-limiting operator.

(a) $f(t)=1$
(b) $T(f)(t)$, when $\kappa=100 / \tau$

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from $T(f)$ for some functions?

- Yes, for eigenfunctions of T !

Definition

An eigenfunction of T is a function $f(t)$ satisfying

- Shannon's problem: find the eigenfunctions

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from $T(f)$ for some functions?

- Yes, for eigenfunctions of T !

Definition

An eigenfunction of T is a function $f(t)$ satisfying

- Shannon's problem: find the eigenfunctions

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from $T(f)$ for some functions?

- Yes, for eigenfunctions of T !

Definition

An eigenfunction of T is a function $f(t)$ satisfying

$$
T(f)(t)=\lambda f(t), \text { for some } \lambda \in \mathbb{C} .
$$

- Shannon's problem: find the eigenfunctions

Shannon's Problem

Problem (Shannon)

Can we come up with a way to recover f back from $T(f)$ for some functions?

- Yes, for eigenfunctions of T !

Definition

An eigenfunction of T is a function $f(t)$ satisfying

$$
T(f)(t)=\lambda f(t), \text { for some } \lambda \in \mathbb{C}
$$

- Shannon's problem: find the eigenfunctions

Fast-forward 20 years

- the problem is solved by Landau, Pollak, and Slepian!

Definition
 A differential operator
 $D\left(x, \partial_{x}\right)=a_{0}(x)+a_{1}(x) \partial_{x}+\cdots+a_{n}(x) \partial_{x}^{n}$
 is a transformation taking a function $f(x)$ to a new function
 $D(f)(x)=a_{0}(x) f^{\prime}(x)+a_{1}(x) f^{\prime}(x)+a_{2}(x) f^{\prime \prime}(x)+\cdots+a_{n}(x) f^{(n)}(x)$.

Example

$D\left(x, \partial_{x}\right)=x \partial_{x}^{2}+2 x$ means $D(f)(x)=x f^{\prime \prime}(x)+2 x f(x)$

Fast-forward 20 years

- the problem is solved by Landau, Pollak, and Slepian!

Definition

A differential operator

$$
D\left(x, \partial_{x}\right)=a_{0}(x)+a_{1}(x) \partial_{x}+\cdots+a_{n}(x) \partial_{x}^{n}
$$

is a transformation taking a function $f(x)$ to a new function

$$
D(f)(x)=a_{0}(x) f(x)+a_{1}(x) f^{\prime}(x)+a_{2}(x) f^{\prime \prime}(x)+\cdots+a_{n}(x) f^{(n)}(x)
$$

Example
$D\left(x, \partial_{x}\right)=x \partial_{x}^{2}+2 x$ means $D(f)(x)=x f^{\prime \prime}(x)+2 x f(x)$.

Fast-forward 20 years

- the problem is solved by Landau, Pollak, and Slepian!

Definition

A differential operator

$$
D\left(x, \partial_{x}\right)=a_{0}(x)+a_{1}(x) \partial_{x}+\cdots+a_{n}(x) \partial_{x}^{n}
$$

is a transformation taking a function $f(x)$ to a new function
$D(f)(x)=a_{0}(x) f(x)+a_{1}(x) f^{\prime}(x)+a_{2}(x) f^{\prime \prime}(x)+\cdots+a_{n}(x) f^{(n)}(x)$.

Example

$D\left(x, \partial_{x}\right)=x \partial_{x}^{2}+2 x$ means $D(f)(x)=x f^{\prime \prime}(x)+2 x f(x)$.

Commuting Operators

Theorem (Landau-Pollak and Pollak-Slepian)

The differential operator $D\left(x, \partial_{x}\right)=\left(\kappa^{2}-x^{2}\right) \partial_{x}^{2}-2 x \partial_{x}+\tau^{2} x^{2}$ commutes with Shannon's time and band-limiting operator T :

$$
T(D(f))(x)=D(T(f))(x)
$$

- Consequence: T and D will have to share eigenfunctions.

$$
T(f)(x)=\lambda f(x) \text { if and only if } D(f)(x)=\mu f(x)
$$

- Just solve the differential equation

Commuting Operators

Theorem (Landau-Pollak and Pollak-Slepian)

The differential operator $D\left(x, \partial_{x}\right)=\left(\kappa^{2}-x^{2}\right) \partial_{x}^{2}-2 x \partial_{x}+\tau^{2} x^{2}$ commutes with Shannon's time and band-limiting operator T :

$$
T(D(f))(x)=D(T(f))(x)
$$

- Consequence: T and D will have to share eigenfunctions.

$$
T(f)(x)=\lambda f(x) \text { if and only if } D(f)(x)=\mu f(x)
$$

- Just solve the differential equation

Commuting Operators

Theorem (Landau-Pollak and Pollak-Slepian)

The differential operator $D\left(x, \partial_{x}\right)=\left(\kappa^{2}-x^{2}\right) \partial_{x}^{2}-2 x \partial_{x}+\tau^{2} x^{2}$ commutes with Shannon's time and band-limiting operator T :

$$
T(D(f))(x)=D(T(f))(x)
$$

- Consequence: T and D will have to share eigenfunctions.

$$
T(f)(x)=\lambda f(x) \text { if and only if } D(f)(x)=\mu f(x)
$$

- Just solve the differential equation

$$
\left(\kappa^{2}-x^{2}\right) f^{\prime \prime}(x)-2 x f^{\prime}(x)+\tau^{2} x^{2} f(x)=\mu f(x)
$$

Outline

(1) Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

More Examples are Found

Question

More commuting integral and differential operators?

Slepian 1960's

(1) examples from spherical harmonics
(2) extensions to n dimensions

Tracy and Widom 1990's

(1) examples from random matrix theory
(2) defined by Airy and Bessel functions
(3) 2020 Steele prize

Figure: David Slepian

Figure: Craig Tracy and Harold Widom

Unifying Theory

- Examples arise naturally in diverse areas!

Question

Can we find a unifying theory or construction?

Observation by Duistermaat and Grünbaum (1986):

- the integral operators found all have very special kernels

$$
K(x, y)=\int_{-r}^{r} \psi(x, z) \psi^{*}(y, z) d z
$$

where $\psi(x, z)$ is a special kind of function called a bispectral function.

Unifying Theory

- Examples arise naturally in diverse areas!

Question

Can we find a unifying theory or construction?
Observation by Duistermaat and Grünbaum (1986):

- the integral operators found all have very special kernels

$$
K(x, y)=\int_{-r}^{r} \psi(x, z) \psi^{*}(y, z) d z
$$

where $\psi(x, z)$ is a special kind of function called a
bispectral function.

Unifying Theory

- Examples arise naturally in diverse areas!

Question

Can we find a unifying theory or construction?
Observation by Duistermaat and Grünbaum (1986):

- the integral operators found all have very special kernels

$$
K(x, y)=\int_{-r}^{r} \psi(x, z) \psi^{*}(y, z) d z
$$

where $\psi(x, z)$ is a special kind of function called a bispectral function.

Bispectral functions

Definition

A function $\psi(x, z)$ is bispectral if it simultaneously satisfies two differential equations

$$
\begin{aligned}
& a_{0}(x) \psi+a_{1}(x) \frac{\partial \psi}{\partial x}+\cdots+a_{m}(x) \frac{\partial^{m} \psi}{\partial x^{m}}=g(z) \psi \\
& b_{0}(z) \psi+b_{1}(z) \frac{\partial \psi}{\partial z}+\cdots+b_{n}(z) \frac{\partial^{n} \psi}{\partial z^{n}}=f(x) \psi
\end{aligned}
$$

In terms of differential operators:

- there are operators $D\left(x, \partial_{x}\right)$ and $B\left(z, \partial_{z}\right)$ with
$D\left(x, \partial_{x}\right) \cdot \psi(x, z)=g(z) \psi(x, z)$
$B\left(z, \partial_{z}\right) \cdot \psi(x, z)=f(x) \psi(x, z)$.

Bispectral functions

Definition

A function $\psi(x, z)$ is bispectral if it simultaneously satisfies two differential equations

$$
\begin{aligned}
& a_{0}(x) \psi+a_{1}(x) \frac{\partial \psi}{\partial x}+\cdots+a_{m}(x) \frac{\partial^{m} \psi}{\partial x^{m}}=g(z) \psi \\
& b_{0}(z) \psi+b_{1}(z) \frac{\partial \psi}{\partial z}+\cdots+b_{n}(z) \frac{\partial^{n} \psi}{\partial z^{n}}=f(x) \psi
\end{aligned}
$$

In terms of differential operators:

- there are operators $D\left(x, \partial_{x}\right)$ and $B\left(z, \partial_{z}\right)$ with

$$
\begin{aligned}
& D\left(x, \partial_{x}\right) \cdot \psi(x, z)=g(z) \psi(x, z) \\
& B\left(z, \partial_{z}\right) \cdot \psi(x, z)=f(x) \psi(x, z)
\end{aligned}
$$

Bispectral Examples

Example

The function $\psi(x, z)=e^{x z}$ is bispectral since

$$
\frac{\partial \psi}{\partial x}=z \psi(x, z) \text { and } \frac{\partial \psi}{\partial z}=x \psi(x, z)
$$

Example

The function $\psi(x, z)=e^{x z}\left(1-x^{-1} z^{-1}\right)$ is bispectral since

Bispectral Examples

Example

The function $\psi(x, z)=e^{x z}$ is bispectral since

$$
\frac{\partial \psi}{\partial x}=z \psi(x, z) \text { and } \frac{\partial \psi}{\partial z}=x \psi(x, z)
$$

Example

The function $\psi(x, z)=e^{x z}\left(1-x^{-1} z^{-1}\right)$ is bispectral since

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{2}{x^{2}} \psi=z^{2} \psi \\
& \frac{\partial^{2} \psi}{\partial z^{2}}-\frac{2}{z^{2}} \psi=x^{2} \psi
\end{aligned}
$$

Bispectral Examples

The Airy funtion $\operatorname{Ai}(x)$ satisfies the Airy differential equation

$$
\operatorname{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)
$$

Example

The function $\psi(x, z)=\operatorname{Ai}(x+z)$ is bispectral since

$$
\frac{\partial^{2} \psi}{\partial x^{2}}-x \psi=z \psi \text { and } \frac{\partial^{2} \psi}{\partial z^{2}}-z \psi=x \psi
$$

Interpretations of Bispectrality

Yuri Berest, Igor Krichever, George Wilson, ...

Unifying Theory

Conjecture (Duistermaat-Grünbaum 1986)

For any sufficiently nice bispectral function $\psi(x, z)$ the integral operator

$$
T(f)(x)=\int_{-s}^{s} K(x, y) f(y) d y
$$

with kernel

$$
K(x, y)=\int_{-r}^{r} \psi(x, z) \psi^{*}(y, z) d z
$$

commutes with a nonconstant differential operator.

Outline

(1) Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

The Spectral Curve

Definition

The eigenvalues of a differential operator $D\left(x, \partial_{x}\right)$ are the complex numbers λ with

$$
D\left(x, \partial_{x}\right) \cdot f(x)=\lambda f(x), \text { for some nonzero } f(x)
$$

$$
\begin{gathered}
D\left(x, \partial_{x}\right) \\
\downarrow
\end{gathered}
$$

\{eigenvalues of $\left.D\left(x, \partial_{x}\right)\right\} \rightarrow$

Spectral Curve

 (compact, complex surface)
The Spectral Curve

Definition

$D\left(x, \partial_{x}\right)$ is bispectral if for some bispectral $\psi(x, z)$

$$
D\left(x, \partial_{x}\right) \cdot \psi(x, z)=g(z) \psi(x, z)
$$

$D\left(x, \partial_{x}\right)$ bispectral

$\left\{\right.$ eigenvalues of $\left.D\left(x, \partial_{x}\right)\right\} \rightarrow$

Balloon-like surface (sphere with pinched point(s))

Explicit Construction

Take $D\left(x, \partial_{x}\right)$ a differential operator.

- Schur 1905: the centralizer $Z(D)$ of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent
- Using filtration by order to define

$$
\begin{gathered}
C=\operatorname{Proj}(\operatorname{Rees}(Z(D)))=\operatorname{Spec}(Z(D)) \cup\{\infty\} \\
\operatorname{Rees}(Z(D))=\bigoplus\{L \in Z(D): \operatorname{order}(L) \leq n\} t^{n} .
\end{gathered}
$$

Explicit Construction

Take $D\left(x, \partial_{x}\right)$ a differential operator.

- Schur 1905: the centralizer $Z(D)$ of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent
- Using filtration by order to define

$$
\begin{gathered}
C=\operatorname{Proj}(\operatorname{Rees}(Z(D)))=\operatorname{Spec}(Z(D)) \cup\{\infty\} \\
\operatorname{Rees}(Z(D))=\bigoplus\{L \in Z(D): \operatorname{order}(L) \leq n\} t^{n} .
\end{gathered}
$$

Explicit Construction

Take $D\left(x, \partial_{x}\right)$ a differential operator.

- Schur 1905: the centralizer $Z(D)$ of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent
- Using filtration by order to define

$$
\begin{gathered}
C=\operatorname{Proj}(\operatorname{Rees}(Z(D)))=\operatorname{Spec}(Z(D)) \cup\{\infty\} \\
\operatorname{Rees}(Z(D))=\bigoplus\{L \in Z(D): \operatorname{order}(L) \leq n\} t^{n} .
\end{gathered}
$$

Explicit Construction

Take $D\left(x, \partial_{x}\right)$ a differential operator.

- Schur 1905: the centralizer $Z(D)$ of D is commutative
- Burchnall-Chaundy 1929: commuting differential operators are algebraically dependent
- Using filtration by order to define

$$
\begin{gathered}
C=\operatorname{Proj}(\operatorname{Rees}(Z(D)))=\operatorname{Spec}(Z(D)) \cup\{\infty\} \\
\operatorname{Rees}(Z(D))=\bigoplus_{n \geq 0}\{L \in Z(D): \operatorname{order}(L) \leq n\} t^{n}
\end{gathered}
$$

Differential Operators on Spectral Curves

Big idea: consider differential operators on the spectral curve!
Definition
Let C be a spectral curve and let
$\mathcal{A}=\{$ holomorphic functions $f: C \backslash\{\infty\} \rightarrow \mathbb{C}\}$
A differential operator on C is a transformation

which satisfies the Ad-condition.

Differential Operators on Spectral Curves

Big idea: consider differential operators on the spectral curve!

Definition

Let C be a spectral curve and let

$$
\mathcal{A}=\{\text { holomorphic functions } f: C \backslash\{\infty\} \rightarrow \mathbb{C}\} .
$$

A differential operator on C is a transformation

$$
R: \mathcal{A} \rightarrow \mathcal{A}, f(z) \mapsto R(f)(z)
$$

which satisfies the Ad-condition.

Ad-condition

Each $a(z) \in \mathcal{A}$ defines a differential operator

$$
M_{a}: f(z) \mapsto a(z) f(z)
$$

Observation: if $R=R\left(z, \partial_{z}\right)$ is a differential operator
$\operatorname{order}\left(\operatorname{Ad}_{M_{a}}^{k}(R)\right) \leq \operatorname{order}(R)-k$.

Definition

A linear transformation $R: \mathcal{A} \rightarrow \mathcal{A}$ satisfies the $A d-c o n d i t i o n ~ i f ~$ there exists $k>0$ with $\operatorname{Ad}_{M_{a}}^{k+1}(R)=0$ for all $a \in \mathcal{A}$.

Ad-condition

Each $a(z) \in \mathcal{A}$ defines a differential operator

$$
M_{a}: f(z) \mapsto a(z) f(z)
$$

Observation: if $R=R\left(z, \partial_{z}\right)$ is a differential operator $\operatorname{order}\left(\operatorname{Ad}_{M_{a}}^{k}(R)\right) \leq \operatorname{order}(R)-k$.

Definition

A linear transformation $R: \mathcal{A} \rightarrow \mathcal{A}$ satisfies the Ad -condition if
there exists $k>0$ with $\operatorname{Ad}_{M_{a}}^{k+1}(R)=0$ for all $a \in \mathcal{A}$.

Ad-condition

Each $a(z) \in \mathcal{A}$ defines a differential operator

$$
M_{a}: f(z) \mapsto a(z) f(z) .
$$

Observation: if $R=R\left(z, \partial_{z}\right)$ is a differential operator $\operatorname{order}\left(\operatorname{Ad}_{M_{a}}^{k}(R)\right) \leq \operatorname{order}(R)-k$.

Definition

A linear transformation $R: \mathcal{A} \rightarrow \mathcal{A}$ satisfies the Ad-condition if there exists $k>0$ with $\mathrm{Ad}_{M_{a}}^{k+1}(R)=0$ for all $a \in \mathcal{A}$.

Differential Operators on Spectral Curves

$\psi(x, z)$ bispectral with operator $D\left(x, \partial_{x}\right)$ and spectral curve C

Theorem (Casper et a.)

Let $R=R\left(z, \partial_{z}\right)$ be a differential operator on C. Then there exists $L\left(x, \partial_{x}\right)$ with

Define the left and right Fourier algebras:

Differential Operators on Spectral Curves

$\psi(x, z)$ bispectral with operator $D\left(x, \partial_{x}\right)$ and spectral curve C

Theorem (Casper et al.)

Let $R=R\left(z, \partial_{z}\right)$ be a differential operator on C. Then there exists $L\left(x, \partial_{x}\right)$ with

$$
L\left(x, \partial_{x}\right) \cdot \psi(x, z)=R\left(z, \partial_{z}\right) \cdot \psi(x, z) .
$$

Define the left and right Fourier algebras:

Differential Operators on Spectral Curves

$\psi(x, z)$ bispectral with operator $D\left(x, \partial_{x}\right)$ and spectral curve C

Theorem (Casper et al.)

Let $R=R\left(z, \partial_{z}\right)$ be a differential operator on C. Then there exists $L\left(x, \partial_{X}\right)$ with

$$
L\left(x, \partial_{x}\right) \cdot \psi(x, z)=R\left(z, \partial_{z}\right) \cdot \psi(x, z)
$$

Define the left and right Fourier algebras:

$$
\begin{aligned}
& \mathcal{F}_{x}(\psi)=\left\{D\left(x, \partial_{x}\right): \text { there exists } B\left(z, \partial_{z}\right) \text { with } B \cdot \psi=D \cdot \psi\right\} . \\
& \mathcal{F}_{z}(\psi)=\left\{B\left(z, \partial_{z}\right): \text { there exists } D\left(x, \partial_{x}\right) \text { with } B \cdot \psi=D \cdot \psi\right\} .
\end{aligned}
$$

Fourier algebra example

Consider the bispectral function $\psi(x, z)=e^{x z}$.

$$
\begin{aligned}
& x \partial_{x} \in \mathcal{F}_{x}(\psi) \text { because } \\
& \qquad x \partial_{x} \cdot \psi(x, z)=x z e^{x z}=z \partial_{z} \cdot \psi(x, z) \\
& \text { in fact } x^{m} \partial_{x}^{n} \in \mathcal{F}_{x}(\psi) \text { for all } m, n>0 \text { because } \\
& x^{m} \partial_{x}^{n} \cdot \psi(x, z)=x^{m} z^{n} e^{x z}=z^{n} \partial_{z}^{m} \cdot \psi(x, z) .
\end{aligned}
$$

$\mathcal{F}_{X}(\psi)=\{$ differential operators with polynomial coefficients $\}$

Fourier algebra example

Consider the bispectral function $\psi(x, z)=e^{x z}$.

- $x \partial_{x} \in \mathcal{F}_{x}(\psi)$ because

$$
x \partial_{x} \cdot \psi(x, z)=x z e^{x z}=z \partial_{z} \cdot \psi(x, z)
$$

- in fact $x^{m} \partial_{x}^{n} \in \mathcal{F}_{x}(\psi)$ for all $m, n>0$ because

$\mathcal{F}_{X}(\psi)=\{$ differential operators with polynomial coefficients $\}$

Fourier algebra example

Consider the bispectral function $\psi(x, z)=e^{x z}$.

- $x \partial_{x} \in \mathcal{F}_{x}(\psi)$ because

$$
x \partial_{x} \cdot \psi(x, z)=x z e^{x z}=z \partial_{z} \cdot \psi(x, z)
$$

- in fact $x^{m} \partial_{x}^{n} \in \mathcal{F}_{x}(\psi)$ for all $m, n>0$ because

$$
x^{m} \partial_{x}^{n} \cdot \psi(x, z)=x^{m} z^{n} e^{x z}=z^{n} \partial_{z}^{m} \cdot \psi(x, z)
$$

$\mathcal{F}_{X}(\psi)=\{$ differential operators with polynomial coefficients $\}$

Fourier algebra example

Consider the bispectral function $\psi(x, z)=e^{x z}$.

- $x \partial_{x} \in \mathcal{F}_{x}(\psi)$ because

$$
x \partial_{x} \cdot \psi(x, z)=x z e^{x z}=z \partial_{z} \cdot \psi(x, z)
$$

- in fact $x^{m} \partial_{x}^{n} \in \mathcal{F}_{x}(\psi)$ for all $m, n>0$ because

$$
x^{m} \partial_{x}^{n} \cdot \psi(x, z)=x^{m} z^{n} e^{x z}=z^{n} \partial_{z}^{m} \cdot \psi(x, z)
$$

$\mathcal{F}_{X}(\psi)=\{$ differential operators with polynomial coefficients $\}$.

$\mathcal{F}_{x}(\psi)$ is Really Big

Theorem (Casper et al.)

The subspace
$\mathcal{F}_{x}^{\ell, m}(\psi)=\left\{L\left(x, \partial_{x}\right): B \cdot \psi=D \cdot \psi, \operatorname{order}(L) \leq \ell, \operatorname{order}(R) \leq m\right\}$
has dimension

$$
\operatorname{dim}\left(\mathcal{F}_{X}^{\ell, m}(\psi)\right) \geq(\ell+1)(m+1)-2 g_{\text {diff. }} .
$$

Outline

(1) Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

Integration by Parts

Remember integration by parts:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}+\int_{a}^{b}-f^{\prime}(x) g(x)
$$

A more complicated example:

 $=\left.\left[f(x) g^{\prime}(x)-f^{\prime}(x) g(x)\right]\right|_{a} ^{b}+\int_{a}^{b} f^{\prime \prime}(x) g(x) d x$

Integration by Parts

Remember integration by parts:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}+\int_{a}^{b}-f^{\prime}(x) g(x)
$$

A more complicated example:

$$
\begin{aligned}
\int_{a}^{b} f(x) g^{\prime \prime}(x) d x & =\left.f(x) g^{\prime}(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x \\
& =\left.\left[f(x) g^{\prime}(x)-f^{\prime}(x) g(x)\right]\right|_{a} ^{b}+\int_{a}^{b} f^{\prime \prime}(x) g(x) d x
\end{aligned}
$$

Integration by Parts

Remember integration by parts:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\overbrace{\left.f(x) g(x)\right|_{a} ^{b}}^{\text {concomitant }}+\overbrace{\int_{a}^{b}-f^{\prime}(x) g(x)}^{\text {adioint }} .
$$

A more complicated example:

$$
\begin{aligned}
\int_{a}^{b} f(x) g^{\prime \prime}(x) d x & =\left.f(x) g^{\prime}(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x \\
& =\left.\left[f(x) g^{\prime}(x)-f^{\prime}(x) g(x)\right]\right|_{a} ^{b}+\int_{a}^{b} f^{\prime \prime}(x) g(x) d x
\end{aligned}
$$

Integration by Parts

Remember integration by parts:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\overbrace{\left.f(x) g(x)\right|_{a} ^{b}}^{\text {concomitant }}+\overbrace{\int_{a}^{b}-f^{\prime}(x) g(x)}^{\text {adjoint }} .
$$

A more complicated example:

$$
\int_{a}^{b} f(x) g^{\prime \prime}(x) d x=\left.f(x) g^{\prime}(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x
$$

$$
=\overbrace{\left.\left[f(x) g^{\prime}(x)-f^{\prime}(x) g(x)\right]\right|_{a} ^{b}}^{\text {concomitant }}+\overbrace{\int_{a}^{b} f^{\prime \prime}(x) g(x)}^{\text {audult }} d x
$$

Adjoints of Differential Operators

Definition

For any differential operator

$$
D\left(x, \partial_{x}\right)=a_{0}(x)+a_{1}(x) \partial_{x}+a_{2}(x) \partial_{x}^{2} \cdots+a_{n}(x) \partial_{x}^{n}
$$

The formal adjoint is

$$
D^{*}\left(x, \partial_{x}\right)=a_{0}(x)-\partial_{x} a_{1}(x)+\partial_{x}^{2} a_{2}(x)+\cdots+(-1)^{n} \partial_{x}^{n} a_{n}(x) .
$$

For example, if $D\left(x, \partial_{x}\right)=x^{2} \partial_{x}$ then

Adjoints of Differential Operators

Definition

For any differential operator

$$
D\left(x, \partial_{x}\right)=a_{0}(x)+a_{1}(x) \partial_{x}+a_{2}(x) \partial_{x}^{2} \cdots+a_{n}(x) \partial_{x}^{n}
$$

The formal adjoint is

$$
D^{*}\left(x, \partial_{x}\right)=a_{0}(x)-\partial_{x} a_{1}(x)+\partial_{x}^{2} a_{2}(x)+\cdots+(-1)^{n} \partial_{x}^{n} a_{n}(x)
$$

For example, if $D\left(x, \partial_{x}\right)=x^{2} \partial_{x}$ then

$$
D^{*}\left(x, \partial_{x}\right)=-\partial_{x} x^{2}=-x^{2} \partial_{x}-2 x
$$

Super Integration by Parts

If $D\left(x, \partial_{x}\right)$ is a differential operator

$$
\begin{aligned}
\int_{a}^{b} f(x) D\left(x, \partial_{x}\right) \cdot g(x) d x & =C_{D}(f, g ; b)-C_{D}(f, g ; a) \\
& +\int_{a}^{b} g(x) D^{*}\left(x, \partial_{x}\right) \cdot f(x) d x
\end{aligned}
$$

Here $C_{D}(f, g ; b)$ is the bilinear concomitant, defined by:

- $D\left(x, \partial_{x}\right)$
- the derivatives of $f(x)$ and $g(x)$ at the point b

Outline

(1) Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

Main Theorem

Theorem (Casper-Yakimov 2019)

Let $\psi(x, z)$ be a self-adjoint, rank 1 bispectral function. Then the integral operator

$$
T(f)(x)=\int_{-s}^{s} K(x, y) f(y) d y
$$

with kernel

$$
K(x, y)=\int_{-r}^{r} \psi(x, z) \psi(y, z) d z
$$

commutes with a nonconstant differential operator in $\mathcal{F}_{x}(\psi)$.

Commuting Integral and Differential Operators
Proving the Conjecture
Future Directions

Proof Sketch

(9) Choose $D\left(x, \partial_{x}\right)$ and $B\left(z, \partial_{z}\right)$ with $D \cdot \psi=B \cdot \psi$ so - they are self-adjoint:

$$
D\left(x, \partial_{x}\right)=D^{*}\left(x, \partial_{x}\right) \text { and } B\left(z, \partial_{z}\right)=B^{*}\left(z, \partial_{z}\right)
$$

- the concomitants of D vanish

$$
C_{D}\left(f, g_{;} \pm s\right)=0 \text { for all } f(x), g(x)
$$

- the concomitants of B also vanish

$$
C_{B}(f, g ; \pm r)=0 \text { for all } f(z), g(z)
$$

Commuting Integral and Differential Operators
Proving the Conjecture
Future Directions

Proof Sketch

(9) Choose $D\left(x, \partial_{x}\right)$ and $B\left(z, \partial_{z}\right)$ with $D \cdot \psi=B \cdot \psi$ so

- they are self-adjoint:

$$
D\left(x, \partial_{x}\right)=D^{*}\left(x, \partial_{x}\right) \text { and } B\left(z, \partial_{z}\right)=B^{*}\left(z, \partial_{z}\right)
$$

- the concomitants of D vanish

$$
C_{D}(f, g ; \pm s)=0 \text { for all } f(x), g(x)
$$

- the concomitants of B also vanish

$$
C_{B}(f, g ; \pm r)=0 \text { for all } f(z), g(z)
$$

Proof Sketch

(9) Choose $D\left(x, \partial_{x}\right)$ and $B\left(z, \partial_{z}\right)$ with $D \cdot \psi=B \cdot \psi$ so

- they are self-adjoint:

$$
D\left(x, \partial_{x}\right)=D^{*}\left(x, \partial_{x}\right) \text { and } B\left(z, \partial_{z}\right)=B^{*}\left(z, \partial_{z}\right)
$$

- the concomitants of D vanish

$$
C_{D}(f, g ; \pm s)=0 \text { for all } f(x), g(x)
$$

- the concomitants of B also vanish

$$
C_{B}\left(f, g ; \pm r^{\prime}\right)=0 \text { for all } f(z), g(z)
$$

Proof Sketch

(P) Choose $D\left(x, \partial_{x}\right)$ and $B\left(z, \partial_{z}\right)$ with $D \cdot \psi=B \cdot \psi$ so

- they are self-adjoint:

$$
D\left(x, \partial_{x}\right)=D^{*}\left(x, \partial_{x}\right) \text { and } B\left(z, \partial_{z}\right)=B^{*}\left(z, \partial_{z}\right)
$$

- the concomitants of D vanish

$$
C_{D}(f, g ; \pm s)=0 \text { for all } f(x), g(x)
$$

- the concomitants of B also vanish

$$
C_{B}(f, g ; \pm r)=0 \text { for all } f(z), g(z)
$$

Proof Sketch

(9) Use Super Integration by Parts!

$$
\begin{aligned}
D\left(x, \partial_{x}\right) \cdot \boldsymbol{K}(x, y) & =\int_{-r}^{r} D\left(x, \partial_{x}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} B\left(z, \partial_{z}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} \psi(x, z) B\left(z, \partial_{z}\right) \cdot \psi(y, z) d z \\
& =\int_{-r}^{r} \psi(x, z) D\left(y, \partial_{y}\right) \cdot \psi(y, z) d z=D\left(y, \partial_{y}\right) \cdot K(x, y)
\end{aligned}
$$

Proof Sketch

(P) Use Super Integration by Parts!

$$
D\left(x, \partial_{x}\right) \cdot K(x, y)=\int_{-r}^{r} D\left(x, \partial_{x}\right) \cdot \psi(x, z) \psi(y, z) d z
$$

$$
\begin{aligned}
& =\int_{-r}^{r} B\left(z, \partial_{z}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} \psi(x, z) B\left(z, \partial_{z}\right) \cdot \psi(y, z) d z
\end{aligned}
$$

$$
=\int_{-r}^{r} \psi(x, z) D\left(y, \partial_{y}\right) \cdot \psi(y, z) d z=D\left(y, \partial_{y}\right) \cdot K(x, y)
$$

Proof Sketch

(P) Use Super Integration by Parts!

$$
\begin{aligned}
D\left(x, \partial_{x}\right) \cdot K(x, y) & =\int_{-r}^{r} D\left(x, \partial_{x}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} B\left(z, \partial_{z}\right) \cdot \psi(x, z) \psi(y, z) d z
\end{aligned}
$$

Proof Sketch

(P) Use Super Integration by Parts!

$$
\begin{aligned}
D\left(x, \partial_{x}\right) \cdot K(x, y) & =\int_{-r}^{r} D\left(x, \partial_{x}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} B\left(z, \partial_{z}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} \psi(x, z) B\left(z, \partial_{z}\right) \cdot \psi(y, z) d z
\end{aligned}
$$

Proof Sketch

(P) Use Super Integration by Parts!

$$
\begin{aligned}
D\left(x, \partial_{x}\right) \cdot K(x, y) & =\int_{-r}^{r} D\left(x, \partial_{x}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} B\left(z, \partial_{z}\right) \cdot \psi(x, z) \psi(y, z) d z \\
& =\int_{-r}^{r} \psi(x, z) B\left(z, \partial_{z}\right) \cdot \psi(y, z) d z \\
& =\int_{-r}^{r} \psi(x, z) D\left(y, \partial_{y}\right) \cdot \psi(y, z) d z=D\left(y, \partial_{y}\right) \cdot K(x, y)
\end{aligned}
$$

Proof Sketch

© Use Super Integration by Parts again!

$$
D\left(x, \partial_{x}\right) \cdot T(f)(x)=\int_{-}^{s} D\left(x, \partial_{x}\right) \cdot K(x, y) f(y) d y
$$

$=T(D \cdot f)(x)$

Proof Sketch

(T) Use Super Integration by Parts again!

$$
D\left(x, \partial_{x}\right) \cdot T(f)(x)=\int_{-s}^{s} D\left(x, \partial_{x}\right) \cdot K(x, y) f(y) d y
$$

Proof Sketch

(T) Use Super Integration by Parts again!

$$
\begin{aligned}
D\left(x, \partial_{x}\right) \cdot T(f)(x) & =\int_{-s}^{s} D\left(x, \partial_{x}\right) \cdot K(x, y) f(y) d y \\
& =\int_{-s}^{s} D\left(y, \partial_{y}\right) \cdot K(x, y) f(y) d y \\
& =\int_{-s}^{s} K(x, y) D\left(y, \partial_{y}\right) \cdot f(y) d y \\
& =T(D \cdot f)(x)
\end{aligned}
$$

Proof Sketch

(9) Use Super Integration by Parts again!

$$
\begin{aligned}
D\left(x, \partial_{x}\right) \cdot T(f)(x) & =\int_{-s}^{s} D\left(x, \partial_{x}\right) \cdot K(x, y) f(y) d y \\
& =\int_{-s}^{s} D\left(y, \partial_{y}\right) \cdot K(x, y) f(y) d y \\
& =\int_{-s}^{s} K(x, y) D\left(y, \partial_{y}\right) \cdot f(y) d y
\end{aligned}
$$

Proof Sketch

© Use Super Integration by Parts again!

$$
\begin{aligned}
D\left(x, \partial_{x}\right) \cdot T(f)(x) & =\int_{-s}^{s} D\left(x, \partial_{x}\right) \cdot K(x, y) f(y) d y \\
& =\int_{-s}^{s} D\left(y, \partial_{y}\right) \cdot K(x, y) f(y) d y \\
& =\int_{-s}^{s} K(x, y) D\left(y, \partial_{y}\right) \cdot f(y) d y \\
& =T(D \cdot f)(x)
\end{aligned}
$$

Outline

(1) Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

Discrete Examples

Idea:

- replace T with a matrix which acts like an integral operator

$$
N \times N \text { Hankel matrix } H_{i j}=h(i+j)
$$

- replace D with a matrix which acts like a differential operator

$N \times N$ tri-diagonal $B_{i j}=0$ for $|i-j|>1$

Question
Can we find interesting families of Hankel matrices commuting with band matrices?

Discrete Examples

Idea:

- replace T with a matrix which acts like an integral operator

$$
N \times N \text { Hankel matrix } H_{i j}=h(i+j)
$$

- replace D with a matrix which acts like a differential operator

$$
N \times N \text { tri-diagonal } B_{i j}=0 \text { for }|i-j|>1
$$

Question
Can we find interesting families of Hankel matrices commuting with band matrices?

Discrete Examples

Idea:

- replace T with a matrix which acts like an integral operator

$$
N \times N \text { Hankel matrix } H_{i j}=h(i+j)
$$

- replace D with a matrix which acts like a differential operator

$$
N \times N \text { tri-diagonal } B_{i j}=0 \text { for }|i-j|>1
$$

Question

Can we find interesting families of Hankel matrices commuting with band matrices?

Hilbert Matrix Example

The $N \times N$ Hilbert matrix is

$$
H_{i j}=\frac{1}{i+j+\mu}, \quad 1 \leq i, j \leq N .
$$

It commutes with a special tridiagonal matrix

Hilbert Matrix Example

The $N \times N$ Hilbert matrix is

$$
H_{i j}=\frac{1}{i+j+\mu}, \quad 1 \leq i, j \leq N
$$

It commutes with a special tridiagonal matrix

$$
B_{i j}=\left\{\begin{array}{cc}
-2(N-i)(N+i+\lambda)\left(i^{2}+(i-1) \lambda-n\right), & i=j \\
i(N-i)(1+i+\lambda)(N+1+i+\lambda), & j=i+1 \\
B_{j i}, & i=j+1
\end{array}\right.
$$

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the eigenvectors of the $N \times N$ Hilbert matrix H :
find \vec{v} with $H \vec{v}=\lambda \vec{v}$ for some \vec{v}.
Numerically ill-posed!

- Idea: H and B have the same eigenvectors
- Calculatina the eigenvectors of B is much easier!

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the eigenvectors of the $N \times N$ Hilbert matrix H :
find \vec{v} with $H \vec{v}=\lambda \vec{v}$ for some \vec{v}.
Numerically ill-posed!

- Idea: H and B have the same eigenvectors
- Calculating the eigenvectors of B is much easier!

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the eigenvectors of the $N \times N$ Hilbert matrix H :

$$
\text { find } \vec{v} \text { with } H \vec{v}=\lambda \vec{v} \text { for some } \vec{v} \text {. }
$$

Numerically ill-posed!

- Idea: H and B have the same eigenvectors
- Calculating the eigenvectors of B is much easier!

Application: Eigenvectors of the Hilbert Matrix

Problem

Find the eigenvectors of the $N \times N$ Hilbert matrix H :

$$
\text { find } \vec{v} \text { with } H \vec{v}=\lambda \vec{v} \text { for some } \vec{v} \text {. }
$$

Numerically ill-posed!

- Idea: H and B have the same eigenvectors
- Calculating the eigenvectors of B is much easier!

Application: Eigenvectors of the Hilbert Matrix

Outline

(1) Commuting Integral and Differential Operators

- Time and Band-Limiting
- Bispectrality
(2) Proving the Conjecture
- Geometry of Differential Operators
- Adjoints of Differential Operators
- Sketch of Proof
(3) Future Directions
- Discrete Time and Band Limiting
- Other Future Directions

Future Work

(1) numerical approximation of eigenfunctions for integral operators
(2) dynamics of Calogero-Moser spaces
(3) orthogonal polynomials
(4) higher dimensional analogs
(5) noncommutative analogs
(6) derived equivalence

Future Work

(1) numerical approximation of eigenfunctions for integral operators
(2) dynamics of Calogero-Moser spaces
© orthogonal polynomials

- higher dimensional analogs
(noncommutative analogs
© derived equivalence

Future Work

(1) numerical approximation of eigenfunctions for integral operators
(2) dynamics of Calogero-Moser spaces
(3) orthogonal polynomials
(9) higher dimensional analogs
(6) noncommutative analogs
(6) derived equivalence

Future Work

(0) numerical approximation of eigenfunctions for integral operators
(2) dynamics of Calogero-Moser spaces
(3) orthogonal polynomials
(9) higher dimensional analogs
© noncommutative analogs
(6) derived equivalence

Future Work

(0) numerical approximation of eigenfunctions for integral operators
(2) dynamics of Calogero-Moser spaces
(3) orthogonal polynomials
(0) higher dimensional analogs
(0) noncommutative analogs
(3) derived equivalence

Future Work

(0) numerical approximation of eigenfunctions for integral operators
(2) dynamics of Calogero-Moser spaces
(3) orthogonal polynomials
(0) higher dimensional analogs
(0) noncommutative analogs
(derived equivalence

Thank You!

- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423.
- Duistermaat, J. J., and Grünbaum, F. A. (1986). Differential equations in the spectral parameter. Communications in Mathematical Physics, 103(2), 177-240.
- Casper, W. R., and Yakimov, M. T. (2019). Integral operators, bispectrality and growth of Fourier algebras. Journal Für Die Reine und Angewandte Mathematik (Crelles Journal).
- Casper, W. R., Grünbaum, F. A., Yakimov, M., and Zurrián, I. (2019). Reflective prolate-spheroidal operators and the KP/KdV equations. Proceedings of the National Academy of Sciences, 116(37), 18310-18315.

