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First-Order Models

Many real-world situations are modeled by first-order ordinary
differential equations

ay
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First-Order Models

Many real-world situations are modeled by first-order ordinary
differential equations

ay

Examples:
@ interest rates
@ mixing fluids in a tank
@ population dynamics
@ falling bodies
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Red Bull Stratos Skydive

Figure: Felix Baumgartner jumps from the stratosphere
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Breaking records

@ Maximum Vertical Speed!

843.6 mph or Mach 1.25
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@ Maximum Vertical Speed!

843.6 mph or Mach 1.25
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Breaking records

@ Maximum Vertical Speed!

843.6 mph or Mach 1.25

@ Highest jump altitude!

127852 .4 feet or 24.21 miles

@ Longest freefall distance!

119431.1 feet or 22.619 miles

@ First freefall to break the speed of sound
@ Highest untethered altitude outside a vehicle
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Velocity versus time
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Figure: Velocity graph of the Stratos jump.*

*Data extracted from graphics in Stratos Summit Report
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First velocity model

(Z;: =g, with v(0)=0.
where

@ g = 9.81m/s? is the gravitational acceleration
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First velocity model

av ,
G- 9 with v(0) = 0.

where
@ g = 9.81m/s? is the gravitational acceleration
The solution of this first-order initial value problem is:

v(t) = gt.
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Velocity versus time
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Figure: Comparing model and observations
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How did we do?

@ As we see, models approximate reality, but have errors!
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How did we do?

@ As we see, models approximate reality, but have errors!
@ The model is very close during the first 20 seconds
@ After this, the true velocity starts to differ

Can we account for the differences and make a better model?
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Red Bull Stratos Skydive

Figure: What forces are in play as Felix falls?
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Introduce a drag force

@ Linear drag:
Fdrag — _va.
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Introduce a drag force

@ Linear drag:
Fdrag — _va.

@ Differential equation:

dv ,
=9 with v(0) = 0.
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Introduce a drag force

@ Linear drag:
Fdrag — _va.

@ Differential equation:

av .
i g — v, with v(0)=0.

@ This is a separable equation!
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Introduce a drag force

@ Linear drag:
Fdrag — _va.

@ Differential equation:

av .
i g — v, with v(0)=0.

@ This is a separable equation!
@ Solution

@ v = g/Vterm
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Velocity versus time
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Figure: Comparing model and observations
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How did we do?

@ The new model is pretty far off!
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How did we do?

@ The new model is pretty far off!

Can we explain why our new model is worse?

@ Physically, we had the wrong drag force...
@ At high speeds, drag behaves quadratically

2
Fdrag = —pBmv~.

W.R. Casper Modeling with First-Order Equations



Acceleration versus velocity
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Figure: Graph of dv/dt versus v
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Acceleration versus velocity fit
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Introduce a drag force

@ New differential equation:

av o _
E_g—ﬁv, with v(0) = 0.
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Introduce a drag force

@ New differential equation:

av o . -
E_g—ﬁv, with v(0) = 0.

@ This is a separable equation!
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Introduce a drag force

@ New differential equation:

av o . -
E_g—ﬁv, with v(0) = 0.

@ This is a separable equation!
@ Solution

v(t) = \/gtanh(\/@t).
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Velocity versus time
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Figure: Comparing model and observations
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How did we do?

@ The new model is much better!
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How did we do?

@ The new model is much better!
@ Still not super great for later times...
@ What are we not taking into acount?
@ Drag is proportional to density!

Farag = —constant - mv2p.
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How did we do?

@ The new model is much better!
@ Still not super great for later times...
@ What are we not taking into acount?
@ Drag is proportional to density!

Farag = —constant - mv2p.

@ Density varies with elevation

p=poe” ",
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Density versus elevation
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Figure: Density is very near 38 km where Felix starts.
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Updated Drag Forcing

@ During the initial time v(t) ~ gt
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Updated Drag Forcing

@ During the initial time v(t) ~ gt
@ Therefore height is

h(t) ~ hy — %gtz, hy = 24.21 miles.
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Updated Drag Forcing

@ During the initial time v(t) ~ gt
@ Therefore height is

h(t) ~ hy — %gtz, hy = 24.21 miles.

@ Consequently,
h ~ ho —_ ——.
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Updated Drag Forcing

@ During the initial time v(t) ~ gt
@ Therefore height is

h(t) ~ hy — %gtz, hy = 24.21 miles.

@ Consequently,
h ~ ho —_ ——.

@ Updated drag:

Farag = —constant - mv2pg exp(h/)\)
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Updated Drag Forcing

@ During the initial time v(t) ~ gt
@ Therefore height is

h(t) ~ hy — %gtz, hy = 24.21 miles.

@ Consequently,
h ~ ho —_ ——.

@ Updated drag:

Farag = —constant - mv2pg exp(h/)\)
= —mv2exp(a + Bv?).
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Acceleration versus velocity fit
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Figure: o = —13.59, f = 4.54 .10
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Generic fitting

@ New and improved model:

‘;‘; — g—v2exp(a+ Bv), with v(0)= 0.
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Generic fitting
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Generic fitting

@ New and improved model:

‘;‘; — g—v2exp(a+ Bv), with v(0)= 0.

@ This is a separable equation!
@ To solve exactly, we'd need to integrate

1
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Generic fitting

@ New and improved model:

‘;‘; — g—v2exp(a+ Bv), with v(0)= 0.

@ This is a separable equation!
@ To solve exactly, we'd need to integrate

1

@ Instead, we approximate using Euler’'s method
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Velocity versus time
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Figure: Comparing model and observations
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Thank you!

T

Figure: Sticking the landing with modelling using first order ODEs!
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