Modeling with First-Order Equations
 California State University Fullerton, February 2020

W.R. Casper

Department of Mathematics
Louisiana State University
February 2, 2020

First-Order Models

Many real-world situations are modeled by first-order ordinary differential equations

$$
\frac{d y}{d t}=f(t, y) .
$$

Examples:

- interest rates
- mixing fluids in a tank
- population dynamics
- falling bodies

First-Order Models

Many real-world situations are modeled by first-order ordinary differential equations

$$
\frac{d y}{d t}=f(t, y) .
$$

Examples:

- interest rates
- mixing fluids in a tank
- population dynamics
- falling bodies

First-Order Models

Many real-world situations are modeled by first-order ordinary differential equations

$$
\frac{d y}{d t}=f(t, y) .
$$

Examples:

- interest rates
- mixing fluids in a tank
- population dynamics
- falling bodies

First-Order Models

Many real-world situations are modeled by first-order ordinary differential equations

$$
\frac{d y}{d t}=f(t, y)
$$

Examples:

- interest rates
- mixing fluids in a tank
- population dynamics

First-Order Models

Many real-world situations are modeled by first-order ordinary differential equations

$$
\frac{d y}{d t}=f(t, y)
$$

Examples:

- interest rates
- mixing fluids in a tank
- population dynamics
- falling bodies

Red Bull Stratos Skydive

Figure: Felix Baumgartner jumps from the stratosphere

Breaking records

- Maximum Vertical Speed!
843.6 mph or Mach 1.25
- Highest jump altitude!
127852.4 feet or 24.21 miles
- Longest freefall distance!
119431.1 feet or 22.619 miles
- First freefall to break the speed of sound
- Highest untethered altitude outside a vehicle

Breaking records

- Maximum Vertical Speed!

843.6 mph or Mach 1.25

- Highest jump altitude!
127852.4 feet or 24.21 miles
- Longest freefall distance!
119431.1 feet or 22.619 miles
- First freefall to break the speed of sound
- Highest untethered altitude outside a vehicle

Breaking records

- Maximum Vertical Speed!

843.6 mph or Mach 1.25

- Highest jump altitude!
127852.4 feet or 24.21 miles
- Longest freefall distance!
119431.1 feet or 22.619 miles
- First freefall to break the speed of sound
- Highest untethered altitude outside a vehicle

Breaking records

- Maximum Vertical Speed!

843.6 mph or Mach 1.25

- Highest jump altitude!
127852.4 feet or 24.21 miles
- Longest freefall distance!
119431.1 feet or 22.619 miles
- First freefall to break the speed of sound
- Highest untethered altitude outside a vehicle

Breaking records

- Maximum Vertical Speed!

843.6 mph or Mach 1.25

- Highest jump altitude!
127852.4 feet or 24.21 miles
- Longest freefall distance!
119431.1 feet or 22.619 miles
- First freefall to break the speed of sound
- Highest untethered altitude outside a vehicle

Velocity versus time

Figure: Velocity graph of the Stratos jump.*
*Data extracted from graphics in Stratos Summit Report

First velocity model

$$
\frac{d v}{d t}=g, \text { with } v(0)=0
$$

where

- $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitational acceleration

The solution of this first-order initial value problem is:

$$
\frac{d v}{d t}=g, \text { with } v(0)=0
$$

where

- $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitational acceleration

The solution of this first-order initial value problem is:

$$
v(t)=g t
$$

Velocity versus time

Figure: Comparing model and observations

- As we see, models approximate reality, but have errors!
- The model is very close during the first 20 seconds
- After this, the true velocity starts to differ

Question

Can we account for the differences and make a better model?

- As we see, models approximate reality, but have errors!
- The model is very close during the first 20 seconds
- After this, the true velocity starts to differ

Question

Can we account for the differences and make a better model?

- As we see, models approximate reality, but have errors!
- The model is very close during the first 20 seconds
- After this, the true velocity starts to differ

Question

Can we account for the differences and make a better model?

How did we do?

- As we see, models approximate reality, but have errors!
- The model is very close during the first 20 seconds
- After this, the true velocity starts to differ

Question

Can we account for the differences and make a better model?

Red Bull Stratos Skydive

Figure: What forces are in play as Felix falls?

Introduce a drag force

- Linear drag:

$$
F_{\mathrm{drag}}=-\gamma m v
$$

- Differential equation:

- This is a separable equation!
- Solution

- $\gamma=g / v_{\text {term }}$

Introduce a drag force

- Linear drag:

$$
F_{\mathrm{drag}}=-\gamma m v
$$

- Differential equation:

$$
\frac{d v}{d t}=g-\gamma v, \text { with } v(0)=0
$$

- This is a separable equation!
- Solution

Introduce a drag force

- Linear drag:

$$
F_{\mathrm{drag}}=-\gamma m v
$$

- Differential equation:

$$
\frac{d v}{d t}=g-\gamma v, \text { with } v(0)=0
$$

- This is a separable equation!
- Solution

Introduce a drag force

- Linear drag:

$$
F_{\mathrm{drag}}=-\gamma m v
$$

- Differential equation:

$$
\frac{d v}{d t}=g-\gamma v, \text { with } v(0)=0
$$

- This is a separable equation!
- Solution

$$
v(t)=\frac{g}{\gamma}\left(1-e^{-\gamma t}\right)
$$

- $\gamma=g / v_{\text {term }}$

Velocity versus time

Figure: Comparing model and observations

- The new model is pretty far off!

Question

Can we explain why our new model is worse?

- Physically, we had the wrong drag force...
- At high speeds, drag behaves quadratically

$$
F_{\mathrm{drag}}=-\beta m v^{2}
$$

- The new model is pretty far off!

Question

Can we explain why our new model is worse?

- Physically, we had the wrong drag force..
- At high speeds, drag behaves quadratically

$$
F_{\mathrm{drag}}=-\beta m v^{2}
$$

- The new model is pretty far off!

Question

Can we explain why our new model is worse?

- Physically, we had the wrong drag force...
- At high speeds, drag behaves quadratically
$F_{\text {drag }}=-\beta m v^{2}$.

How did we do?

- The new model is pretty far off!

Question

Can we explain why our new model is worse?

- Physically, we had the wrong drag force...
- At high speeds, drag behaves quadratically

$$
F_{\mathrm{drag}}=-\beta m v^{2}
$$

Acceleration versus velocity

Figure: Graph of $d v / d t$ versus v

Acceleration versus velocity fit

Figure: $\beta=2.25 \cdot 10^{-5}$

Introduce a drag force

- New differential equation:

$$
\frac{d v}{d t}=g-\beta v^{2}, \text { with } v(0)=0 .
$$

- This is a separable equation!

- Solution

Introduce a drag force

- New differential equation:

$$
\frac{d v}{d t}=g-\beta v^{2}, \text { with } v(0)=0
$$

- This is a separable equation!
- Solution

Introduce a drag force

- New differential equation:

$$
\frac{d v}{d t}=g-\beta v^{2}, \text { with } v(0)=0
$$

- This is a separable equation!
- Solution

$$
v(t)=\sqrt{\frac{g}{\beta}} \tanh (\sqrt{\beta g} t)
$$

Velocity versus time

Figure: Comparing model and observations

- The new model is much better!
- Still not super great for later times...
- What are we not taking into acount?
- Drag is proportional to density!

- Density varies with elevation
- The new model is much better!
- Still not super great for later times...
- What are we not taking into acount?
- Drag is proportional to density!
$F_{\text {drag }}=-$ constant $\cdot m v^{2} p$.
- Density varies with elevation
- The new model is much better!
- Still not super great for later times...
- What are we not taking into acount?
- Drag is proportional to density!

- Density varies with elevation
- The new model is much better!
- Still not super great for later times...
- What are we not taking into acount?
- Drag is proportional to density!

$$
F_{\mathrm{drag}}=- \text { constant } \cdot m v^{2} \rho
$$

- Density varies with elevation
- The new model is much better!
- Still not super great for later times...
- What are we not taking into acount?
- Drag is proportional to density!

$$
F_{\mathrm{drag}}=- \text { constant } \cdot m v^{2} \rho
$$

- Density varies with elevation

$$
\rho=\rho_{0} e^{-h / \lambda} .
$$

Density versus elevation

Figure: Density is very near 38 km where Felix starts.

Updated Drag Forcing

- During the initial time $v(t) \approx g t$
- Therefore height is

$$
h(t) \approx h_{0}-\frac{1}{2} g t^{2}, \quad h_{0}=24.21 \text { miles. }
$$

- Consequently,

- Updated drag:

$$
\begin{aligned}
\digamma_{\mathrm{drag}} & =-\mathrm{constant} \cdot m v^{2} p_{0} \exp (h / \lambda) \\
& =-m v^{2} \exp \left(\alpha+\beta v^{2}\right)
\end{aligned}
$$

Updated Drag Forcing

- During the initial time $v(t) \approx g t$
- Therefore height is

$$
h(t) \approx h_{0}-\frac{1}{2} g t^{2}, \quad h_{0}=24.21 \text { miles }
$$

- Consequently,

- Updated drag:
$F_{\text {drag }}=-$ constant $\cdot m v^{2} \rho_{0} \exp (h / \lambda)$

Updated Drag Forcing

- During the initial time $v(t) \approx g t$
- Therefore height is

$$
h(t) \approx h_{0}-\frac{1}{2} g t^{2}, \quad h_{0}=24.21 \text { miles }
$$

- Consequently,

$$
h \approx h_{0}-\frac{v^{2}}{2 g} .
$$

- Updated drag:
$F_{\text {drag }}=-$ constant $\cdot m v^{2} \rho_{0} \exp (h / \lambda)$

Updated Drag Forcing

- During the initial time $v(t) \approx g t$
- Therefore height is

$$
h(t) \approx h_{0}-\frac{1}{2} g t^{2}, \quad h_{0}=24.21 \text { miles }
$$

- Consequently,

$$
h \approx h_{0}-\frac{v^{2}}{2 g} .
$$

- Updated drag:

$$
F_{\text {drag }}=- \text { constant } \cdot m v^{2} \rho_{0} \exp (h / \lambda)
$$

Updated Drag Forcing

- During the initial time $v(t) \approx g t$
- Therefore height is

$$
h(t) \approx h_{0}-\frac{1}{2} g t^{2}, \quad h_{0}=24.21 \text { miles }
$$

- Consequently,

$$
h \approx h_{0}-\frac{v^{2}}{2 g} .
$$

- Updated drag:

$$
\begin{aligned}
F_{\text {drag }} & =- \text { constant } \cdot m v^{2} \rho_{0} \exp (h / \lambda) \\
& =-m v^{2} \exp \left(\alpha+\beta v^{2}\right) .
\end{aligned}
$$

Acceleration versus velocity fit

Figure: $\alpha=-13.59, \beta=4.54 \cdot 10^{-6}$

Generic fitting

- New and improved model:

$$
\frac{d v}{d t}=g-v^{2} \exp (\alpha+\beta v), \text { with } v(0)=0 .
$$

- This is a separable equation!
- To solve exactly, we'd need to integrate

- Instead, we approximate using Euler's method

Generic fitting

- New and improved model:

$$
\frac{d v}{d t}=g-v^{2} \exp (\alpha+\beta v), \text { with } v(0)=0
$$

- This is a separable equation!
- To solve exactly, we'd need to integrate

- Instead, we approximate using Euler's method

Generic fitting

- New and improved model:

$$
\frac{d v}{d t}=g-v^{2} \exp (\alpha+\beta v), \text { with } v(0)=0
$$

- This is a separable equation!
- To solve exactly, we'd need to integrate

$$
\int \frac{1}{g-v^{2} e^{\alpha+\beta v}} d v
$$

- Instead, we approximate using Euler's method

Generic fitting

- New and improved model:

$$
\frac{d v}{d t}=g-v^{2} \exp (\alpha+\beta v), \text { with } v(0)=0
$$

- This is a separable equation!
- To solve exactly, we'd need to integrate

$$
\int \frac{1}{g-v^{2} e^{\alpha+\beta v}} d v
$$

- Instead, we approximate using Euler's method

Velocity versus time

Figure: Comparing model and observations

Thank you!

Figure: Sticking the landing with modelling using first order ODEs!

