Representation Theory and the Matrix Bochner Problem GAP XVI

W.R. Casper

Department of Mathematics Louisiana State University

June 2, 2018

W.R. Casper Representation Theory and the Matrix Bochner Problem

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification

3 Consequences for Spherical Functions

- Weight matrix factorization
- Differential dependence

・ 同 ト ・ ヨ ト ・ ヨ

Outline

Spherical Functions Orthogonal Matrix Polynomials

Representation Theory and Orthogonal Matrix Polynomials Spherical Functions

• Orthogonal Matrix Polynomials

2 The Matrix Bochner Problem

- The Problem
- Classification

3 Consequences for Spherical Functions

- Weight matrix factorization
- Differential dependence

Spherical Functions Orthogonal Matrix Polynomials

Spherical function definition

DATA:

- real, semisimple Lie group G
- compact subgroup K with $U(\mathfrak{g}^{\mathbb{C}})^{K}$ commutative
- Cartan subgroup A which is 1-dim
- compact centralizer $M = C_G(A) \cap K$
- unitary representation $\tau : K \times K \to \text{End}_{\mathbb{C}}(E)$

Definition

 $F: G \rightarrow E$ is τ -spherical if smooth and

$$F(k_1ak_2^{-1}) = \tau(k_1, k_2)F(a) \ \forall k_1, k_2 \in K, \ a \in A.$$

Spherical Functions Orthogonal Matrix Polynomials

Examples

• unitary rep
$$\widetilde{\pi}: G \to \widetilde{E} = \mathsf{End}_{\mathbb{C}}(\widetilde{V})$$
 is $\widetilde{\tau}$ spherical for

$$\widetilde{\tau}: \mathcal{K} \times \mathcal{K} \to \mathsf{End}_{\mathbb{C}}(\widetilde{\mathcal{E}}), \ \ \widetilde{\tau}(k_1, k_2): \varphi \mapsto \widetilde{\pi}(k_1) \varphi \widetilde{\pi}(k_2).$$

More generally, consider $V \subseteq \widetilde{V} \widetilde{\pi}|_{K}$ -inv, and $\pi: K \to E = \text{End}(V)$ the corresp. rep

•
$$F^{\widetilde{\pi}}_{\pi}(g):=P_V\circ\pi(g):G
ightarrow E$$
 is au -spherical for

 $\tau: \mathcal{K} \times \mathcal{K} \to \mathsf{End}_{\mathbb{C}}(\mathcal{E}), \ \tau(k_1, k_2): \varphi \mapsto \pi(k_1)\varphi \pi(k_2).$

ie.

$$F_{\pi}^{\widetilde{\pi}}(k_1ak_2^{-1}) = \pi(k_1)F_{\pi}^{\widetilde{\pi}}(a)\pi(k_2).$$

Spherical Functions Orthogonal Matrix Polynomials

Spherical function properties

Take $F : G \rightarrow E$ to be τ -spherical:

- $F|_A$ determines F (by global Cartan decomp G = KAK)
- F|_A is M-equivariant

$$F(A) \subseteq E^M := \{ v \in E : \tau(m, m)v = v \}.$$

- $X \cdot F$ is τ -spherical for all $X \in (\mathfrak{g}^{\mathbb{C}})^{K}$
- Casselman-Miličić map:

$$\Pi_{ au}: U(\mathfrak{g}^{\mathbb{C}})^{\mathcal{K}} o \operatorname{End}_{\mathbb{C}}(E^{M}) \otimes_{\mathbb{C}} \mathcal{D}(A).$$

 $(X \cdot F)_{\mathcal{A}} = \Pi_{ au}(X) \cdot F_{\mathcal{A}}$

イロン 不同 とくほ とくほ とう

Spherical Functions Orthogonal Matrix Polynomials

Irreducible spherical functions

Definition

if $\pi: K \to V, \tilde{\pi}: G \to \tilde{V}$ are both irreducible, unitary then $F_{\pi}^{\tilde{\pi}}: G \to E = \text{End}(V)$ is called an **irreducible spherical** function

• Orthogonality ($\tilde{\pi}_1 \neq \tilde{\pi}_2$ irred. unitary):

$$\int_{A}F^{\pi}_{\widetilde{\pi}_{1}}(a)^{*}F^{\pi}_{\widetilde{\pi}_{2}}(a)da=0$$

• Eigenfunctions of every $C \in U(\mathfrak{g}^{\mathbb{C}})^{K}$ (Casselman-Miličić):

$$\Pi_{\tau}(\boldsymbol{C}) \cdot \boldsymbol{F}_{\widetilde{\pi}}^{\pi}|_{\boldsymbol{A}} = \lambda(\widetilde{\pi}, \boldsymbol{C})\boldsymbol{F}_{\widetilde{\pi}}^{\pi}|_{\boldsymbol{A}}.$$

ヘロト ヘアト ヘビト ヘビト

Outline

Spherical Functions Orthogonal Matrix Polynomials

Representation Theory and Orthogonal Matrix Polynomials Spherical Functions

- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification

3 Consequences for Spherical Functions

- Weight matrix factorization
- Differential dependence

Spherical Functions Orthogonal Matrix Polynomials

Matrix Polynomial Construction

Dual object

 $\widehat{G} = \{$ equiv. classes of irred. unitary reps of $G\}$.

Refinement

$$\widehat{G}(\pi) = \{\pi \in \widehat{G} : \pi \text{ occurs in } \widetilde{\pi}|_{K} \text{ with multiplicity 1} \}.$$

 $\widehat{G}(\pi, n) = \{\pi \in \widehat{G}(\pi) : \deg(\widetilde{\pi}) - \deg(\pi) = n\}.$
 $T_{n} = T_{n,\pi} := \bigoplus_{\widetilde{\pi} \in \widehat{G}(\pi, n)} F_{\pi}^{\widetilde{\pi}} : G \to E^{\oplus |\widehat{G}(\pi, n)|}.$

<ロ> (四) (四) (三) (三) (三)

Spherical Functions Orthogonal Matrix Polynomials

Matrix Polynomial Construction

•
$$E^M = \{ \varphi \in E : \pi(m), \varphi \text{ commute } \forall m \in M \}$$

For sufficiently nice (G, K) (eg. $G = U(n+m), K = U(n) \times U(m)$, or $G = SU(2) \times SU(2), K = diag)$,

$$\ell := |\widehat{G}(\pi, n)| = \dim(E^M).$$

- T_n restricts to an $\ell \times \ell$ -matrix valued function on A
- T₀ is invertible away from a few points
- $P_n(x) = T_n(a(x))T_0^{-1}(a(x))$ is a matrix-valued polynomial of degree *n* for appropriate parametrization a(x) of *A*

Properties

Spherical Functions Orthogonal Matrix Polynomials

deg(P_n(x)) = n with nonsingular leading coeff for all n ≥ 0
Orthogonality:

$$\int P_n(x)W(x)P_m(x)^*dx = 0, \ W(x) = T_0(a(x))T_0(a(x))^*.$$

• Eigenfunctions of second-order differential operator:

$$P_n(x) \cdot T_0(a(x)) \Pi_{\tau}(C)^* T_0(a(x))^{-1} = \Lambda(n) P_n(x)$$

NOTE: the right action is a convention for compatibility with noncommutative terms in the inner product

Outline

Representation Theory and Orthogonal Matrix Polynomials
 Spherical Functions

- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight matrix factorization
 - Differential dependence

The Problem Classification

Matrix Bochner Problem

Problem

Classify all orthogonal matrix polynomials which are eigenfunctions of a second-order differential operator.

- Equiv. classify all weights W(x)
- More generally, calculate

$$\mathcal{D}(W) = \{ D : \exists \Lambda(n) \text{ s.t. } P_n(x) \cdot D = \Lambda(n)P_n(x) \forall n \}.$$

< 口 > < 同 > < 臣 > < 臣 >

Classical (scalar) examples

- Hermite polynomials corresp. to weight $W(x) = e^{-x^2}$ are eigenfunctions of $\partial_x^2 2x$
- Laguerre polynomials corresp. to weight $W(x) = x^b e^{-x} 1_{(0,\infty)}(x)$ are eigenfunctions of $\partial_x^2 x + \partial_x (b+1-x)$
- Jacobi polynomials corresp. to weight $W(x) = (1 - x)^a (1 + x)^b 1_{(-1,1)}(x)$ are eigenfunctions of $\partial_x^2 (1 - x)^2 + \partial_x (a - b - (a + b + 2)x)$

Theorem (Bochner)

Up to affine trans. these are all possible cases which are 1×1

ヘロン 人間 とくほ とくほ とう

3

Outline

The Problem Classification

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight matrix factorization
 - Differential dependence

The Problem Classification

The algebra $\mathcal{D}(W)$

- subalgebra of $M_N(\mathbb{C}[x,\partial_x])^{op}$
- closed under adjoint operation

$$D\mapsto D^{\dagger}=W(x)D^{*}W(x)^{-1}.$$

- noncommutative, semiprime PI algebra
- finitely generated algebra over \mathbb{C} (nontrivial!)
- center $\mathcal{Z}(W)$ is finitely generated over \mathbb{C}

The Problem Classification

Local structure of $\mathcal{D}(W)$

Ring of fractions

 $\mathcal{F}(W) = \{B^{-1}A : A, B \in \mathcal{Z}(W), B \text{ not a zero divisor}\}.$

\$\mathcal{F}_i(\mathcal{W})\$, \$i = 1, ..., \$r\$ fraction field of \$i\$ th irred. component of Spec(\$\mathcal{Z}(\mathcal{W})\$)

Theorem (-, Yakimov 2018)

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_i}(\mathcal{F}_i(W)).$$

イロト 不得 とくほ とくほ とう

3

Classification

The Problem Classification

• $n_1 + \cdots + n_r$ is the **rank** of $\mathcal{D}(W)$ (bounded by ℓ)

Theorem (-,Yakimov 2018)

Let W(x) be an $\ell \times \ell$ weight matrix solving Bochner, with $\mathcal{D}(W)$ having rank ℓ . Then

$$W(x) = U(x) diag(r_1(x), \ldots, r_\ell(x)) U(x)^*$$

for some rational matrix U(x) and some classical weights $r_1(x), \ldots, r_\ell(x)$ and

$$P_n(x) = diag(p_{1n}(x), \dots, p_{\ell,n}(x)) \cdot L$$

for some differential operator L.

< 口 > < 四 > < 三 > < 三 > < 三 >

Outline

Weight matrix factorization Differential dependence

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification

Consequences for Spherical Functions

- Weight matrix factorization
- Differential dependence

Weight matrix

Weight matrix factorization Differential dependence

- Recall from construction π : K → E = End(V) gave us F^π_π which gave us a matrix weight W(x) = W_π(x).
- The above classification says

$$W_{\pi}(x) = U_{\pi}(x) \operatorname{diag}(r_1(x), \ldots, r_{\ell}(x)) U_{\pi}(x)$$

 This type factorization was observed previously in special cases, now explained!

Outline

Weight matrix factorization Differential dependence

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification

Consequences for Spherical Functions

- Weight matrix factorization
- Differential dependence

Weight matrix factorization Differential dependence

Spherical functions

• $L = L_{\pi}$ conjugates $\widetilde{C} = T_0(x)\Pi_{\tau}(C)^*T_0(x)^{-1}$ to diagonal

$$L_{\pi}\widetilde{C} = \operatorname{diag}(D_1,\ldots,D_r)L_{\pi}$$

for some differential operators D_1, \ldots, D_R .

- therefore the images of the Casimir operators under the Π_τ are all related
- the derivatives of τ -spherical functions are also all related

Future work: try to understand the values of $U_{\pi}(x)$ and L_{π} from Lie theoretic perspective

イロト 不得 とくほ とくほとう

Weight matrix factorization Differential dependence

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite *J*-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Koelink, Erik and van Pruijssen, Maarten and Román, Pablo. Matrix-valued orthogonal polynomials related to (SU(2) × SU(2), diag), IMRN 2012