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Spherical function definition

DATA:
real, semisimple Lie group G
compact subgroup K with U(gC)K commutative
Cartan subgroup A which is 1-dim
compact centralizer M = CG(A) ∩ K
unitary representation τ : K × K → EndC(E)

Definition
F : G→ E is τ -spherical if smooth and

F (k1ak−1
2 ) = τ(k1, k2)F (a) ∀k1, k2 ∈ K , a ∈ A.
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Examples

unitary rep π̃ : G→ Ẽ = EndC(Ṽ ) is τ̃ spherical for

τ̃ : K × K → EndC(Ẽ), τ̃(k1, k2) : ϕ 7→ π̃(k1)ϕπ̃(k2).

More generally, consider V ⊆ Ṽ π̃|K -inv, and
π : K → E = End(V ) the corresp. rep

F π̃
π (g) := PV ◦ π(g) : G→ E is τ -spherical for

τ : K × K → EndC(E), τ(k1, k2) : ϕ 7→ π(k1)ϕπ(k2).

ie.
F π̃
π (k1ak−1

2 ) = π(k1)F π̃
π (a)π(k2).
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Spherical function properties

Take F : G→ E to be τ -spherical:

F |A determines F (by global Cartan decomp G = KAK )
F |A is M-equivariant

F (A) ⊆ EM := {v ∈ E : τ(m,m)v = v}.

X · F is τ -spherical for all X ∈ (gC)K

Casselman-Miličić map:

Πτ : U(gC)K → EndC(EM)⊗C D(A).

(X · F )A = Πτ (X ) · FA
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Irreducible spherical functions

Definition

if π : K → V , π̃ : G→ Ṽ are both irreducible, unitary then
F π̃
π : G→ E = End(V ) is called an irreducible spherical

function

Orthogonality (π̃1 6= π̃2 irred. unitary):∫
A

Fπ
π̃1

(a)∗Fπ
π̃2

(a)da = 0

Eigenfunctions of every C ∈ U(gC)K (Casselman-Miličić):

Πτ (C) · Fπ
π̃ |A = λ(π̃,C)Fπ

π̃ |A.
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Matrix Polynomial Construction

Dual object

Ĝ = {equiv. classes of irred. unitary reps of G}.

Refinement

Ĝ(π) = {π ∈ Ĝ : π occurs in π̃|K with multiplicity 1}.

Ĝ(π,n) = {π ∈ Ĝ(π) : deg(π̃)− deg(π) = n}.

Tn = Tn,π :=
⊕

π̃∈Ĝ(π,n)

F π̃
π : G→ E⊕|Ĝ(π,n)|.
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Matrix Polynomial Construction

EM = {ϕ ∈ E : π(m), ϕ commute ∀m ∈ M}

For sufficiently nice (G,K ) (eg.
G = U(n + m),K = U(n)× U(m), or
G = SU(2)× SU(2),K = diag),

` := |Ĝ(π,n)| = dim(EM).

Tn restricts to an `× `-matrix valued function on A
T0 is invertible away from a few points
Pn(x) = Tn(a(x))T−1

0 (a(x)) is a matrix-valued polynomial
of degree n for appropriate parametrization a(x) of A
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Properties

deg(Pn(x)) = n with nonsingular leading coeff for all n ≥ 0
Orthogonality:∫

Pn(x)W (x)Pm(x)∗dx = 0, W (x) = T0(a(x))T0(a(x))∗.

Eigenfunctions of second-order differential operator:

Pn(x) · T0(a(x))Πτ (C)∗T0(a(x))−1 = Λ(n)Pn(x)

NOTE: the right action is a convention for compatibility with
noncommutative terms in the inner product
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Matrix Bochner Problem

Problem
Classify all orthogonal matrix polynomials which are
eigenfunctions of a second-order differential operator.

Equiv. classify all weights W (x)

More generally, calculate

D(W ) = {D : ∃Λ(n) s.t. Pn(x) · D = Λ(n)Pn(x)∀n}.
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Classical (scalar) examples

Hermite polynomials corresp. to weight W (x) = e−x2
are

eigenfunctions of ∂2
x − 2x

Laguerre polynomials corresp. to weight
W (x) = xbe−x1(0,∞)(x) are eigenfunctions of
∂2

x x + ∂x (b + 1− x)

Jacobi polynomials corresp. to weight
W (x) = (1− x)a(1 + x)b1(−1,1)(x) are eigenfunctions of
∂2

x (1− x)2 + ∂x (a− b − (a + b + 2)x)

Theorem (Bochner)
Up to affine trans. these are all possible cases which are 1× 1
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The algebra D(W )

subalgebra of MN(C[x , ∂x ])op

closed under adjoint operation

D 7→ D† = W (x)D∗W (x)−1.

noncommutative, semiprime PI algebra
finitely generated algebra over C (nontrivial!)
center Z(W ) is finitely generated over C
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Local structure of D(W )

Ring of fractions

F(W ) = {B−1A : A,B ∈ Z(W ), B not a zero divisor}.

Fi(W ), i = 1, . . . , r fraction field of i ’th irred. component of
Spec(Z(W ))

Theorem (-,Yakimov 2018)

D(W )⊗Z(W ) F(W ) ∼=
r⊕

i=1

Mni (Fi(W )).
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Classification

n1 + · · ·+ nr is the rank of D(W ) (bounded by `)

Theorem (-,Yakimov 2018)

Let W (x) be an `× ` weight matrix solving Bochner, with D(W )
having rank `. Then

W (x) = U(x)diag(r1(x), . . . , r`(x))U(x)∗

for some rational matrix U(x) and some classical weights
r1(x), . . . , r`(x) and

Pn(x) = diag(p1n(x), . . . ,p`,n(x)) · L

for some differential operator L.
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Weight matrix

Recall from construction π : K → E = End(V ) gave us F π̃
π

which gave us a matrix weight W (x) = Wπ(x).
The above classification says

Wπ(x) = Uπ(x)diag(r1(x), . . . , r`(x))Uπ(x)

This type factorization was observed previously in special
cases, now explained!
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Spherical functions

L = Lπ conjugates C̃ = T0(x)Πτ (C)∗T0(x)−1 to diagonal

LπC̃ = diag(D1, . . . ,Dr )Lπ

for some differential operators D1, . . . ,DR.
therefore the images of the Casimir operators under the Πτ

are all related
the derivatives of τ -spherical functions are also all related

Future work: try to understand the values of Uπ(x) and Lπ
from Lie theoretic perspective
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Thanks for listening!

New paper: https://arxiv.org/abs/1803.04405
Bochner, Salomon. Über Sturm-Liouvillesche
Polynomsysteme, Mathematische Zeitschrift 1929.
Kreı̆n, M. Infinite J-matrices and the matrix-moment
problem, DokladyAkad. Nauk SSSR 1949
Geiger, Joel and Horozov, Emil and Yakimov, Milen.
Noncommutative bispectral Darboux transformations,
Transactions AMS 2017
Koelink, Erik and van Pruijssen, Maarten and Román,
Pablo. Matrix-valued orthogonal polynomials related to
(SU(2)× SU(2),diag), IMRN 2012
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