Representation Theory and the Matrix Bochner Problem GAP XVI

W.R. Casper

Department of Mathematics
Louisiana State University

June 2, 2018

Outline

(1) Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
(2) The Matrix Bochner Problem
- The Problem
- Classification
(3) Consequences for Spherical Functions
- Weight matrix factorization
- Differential dependence

Representation Theory and Orthogonal Matrix Polynomials
The Matrix Bochner Problem Consequences for Spherical Functions

Outline

(1) Representation Theory and Orthogonal Matrix Polynomials - Spherical Functions

- Orthogonal Matrix Polynomials
(2) The Matrix Bochner Problem
- The Problem
- Classification
(3) Consequences for Spherical Functions
- Weight matrix factorization
- Differential dependence

Spherical function definition

DATA:

- real, semisimple Lie group G
- compact subgroup K with $U\left(\mathfrak{g}^{\mathbb{C}}\right)^{K}$ commutative
- Cartan subgroup A which is 1 -dim
- compact centralizer $M=C_{G}(A) \cap K$
- unitary representation $\tau: K \times K \rightarrow \operatorname{End}_{\mathbb{C}}(E)$

Definition

$F: G \rightarrow E$ is τ-spherical if smooth and

$$
F\left(k_{1} a k_{2}^{-1}\right)=\tau\left(k_{1}, k_{2}\right) F(a) \forall k_{1}, k_{2} \in K, a \in A .
$$

Examples

- unitary rep $\widetilde{\pi}: G \rightarrow \widetilde{E}=\operatorname{End}_{\mathbb{C}}(\widetilde{V})$ is $\widetilde{\tau}$ spherical for

$$
\widetilde{\tau}: K \times K \rightarrow \operatorname{End}_{\mathbb{C}}(\widetilde{E}), \quad \widetilde{\tau}\left(k_{1}, k_{2}\right): \varphi \mapsto \widetilde{\pi}\left(k_{1}\right) \varphi \widetilde{\pi}\left(k_{2}\right)
$$

More generally, consider $\left.V \subseteq \widetilde{V} \widetilde{\pi}\right|_{K}$-inv, and
$\pi: K \rightarrow E=\operatorname{End}(V)$ the corresp. rep

- $F_{\pi}^{\widetilde{\pi}}(g):=P_{V} \circ \pi(g): G \rightarrow E$ is τ-spherical for

$$
\tau: K \times K \rightarrow \operatorname{End}_{\mathbb{C}}(E), \quad \tau\left(k_{1}, k_{2}\right): \varphi \mapsto \pi\left(k_{1}\right) \varphi \pi\left(k_{2}\right)
$$

ie.

$$
F_{\pi}^{\widetilde{\pi}}\left(k_{1} a k_{2}^{-1}\right)=\pi\left(k_{1}\right) F_{\pi}^{\widetilde{\pi}}(a) \pi\left(k_{2}\right)
$$

Spherical function properties

Take $F: G \rightarrow E$ to be τ-spherical:

- $\left.F\right|_{A}$ determines F (by global Cartan decomp $G=K A K$)
- $\left.F\right|_{A}$ is M-equivariant

$$
F(A) \subseteq E^{M}:=\{v \in E: \tau(m, m) v=v\}
$$

- $X \cdot F$ is τ-spherical for all $X \in\left(\mathfrak{g}^{\mathbb{C}}\right)^{K}$
- Casselman-Miličić map:

$$
\begin{gathered}
\Pi_{\tau}: U\left(\mathfrak{g}^{\mathbb{C}}\right)^{K} \rightarrow \operatorname{End}_{\mathbb{C}}\left(E^{M}\right) \otimes_{\mathbb{C}} \mathcal{D}(A) . \\
(X \cdot F)_{A}=\Pi_{\tau}(X) \cdot F_{A}
\end{gathered}
$$

Irreducible spherical functions

Definition

if $\pi: K \rightarrow V, \widetilde{\pi}: G \rightarrow \widetilde{V}$ are both irreducible, unitary then $F_{\pi}^{\tilde{\pi}}: G \rightarrow E=\operatorname{End}(V)$ is called an irreducible spherical function

- Orthogonality ($\widetilde{\pi}_{1} \neq \widetilde{\pi}_{2}$ irred. unitary):

$$
\int_{A} F_{\widetilde{\pi}_{1}}^{\pi}(a)^{*} F_{\widetilde{\pi}_{2}}^{\pi}(a) d a=0
$$

- Eigenfunctions of every $C \in U\left(\mathfrak{g}^{\mathbb{C}}\right)^{K}$ (Casselman-Miličić):

$$
\left.\Pi_{\tau}(C) \cdot F_{\widetilde{\pi}}^{\pi}\right|_{A}=\left.\lambda(\widetilde{\pi}, C) F_{\widetilde{\pi}}^{\pi}\right|_{A}
$$

Representation Theory and Orthogonal Matrix Polynomials
The Matrix Bochner Problem Consequences for Spherical Functions

Outline

(1) Representation Theory and Orthogonal Matrix Polynomials - Spherical Functions

- Orthogonal Matrix PolynomialsThe Matrix Bochner Problem
- The Problem
- Classification
(3) Consequences for Spherical Functions
- Weight matrix factorization
- Differential dependence

Matrix Polynomial Construction

- Dual object

$$
\widehat{G}=\{\text { equiv. classes of irred. unitary reps of } G\} .
$$

- Refinement

$$
\begin{gathered}
\widehat{\mathcal{G}}(\pi)=\left\{\pi \in \widehat{\mathcal{G}}: \pi \text { occurs in }\left.\widetilde{\pi}\right|_{K} \text { with multiplicity } 1\right\} . \\
\widehat{\mathcal{G}}(\pi, n)=\{\pi \in \widehat{\mathrm{G}}(\pi): \operatorname{deg}(\widetilde{\pi})-\operatorname{deg}(\pi)=n\} . \\
T_{n}=T_{n, \pi}:=\bigoplus_{\widetilde{\pi} \in \widehat{\mathcal{G}}(\pi, n)} F_{\pi}^{\widetilde{\pi}}: G \rightarrow E^{\oplus|\widehat{G}(\pi, n)|}
\end{gathered}
$$

Matrix Polynomial Construction

- $E^{M}=\{\varphi \in E: \pi(m), \varphi$ commute $\forall m \in M\}$

For sufficiently nice (G, K) (eg.

$$
\begin{aligned}
& G=U(n+m), K=U(n) \times U(m), \text { or } \\
& G=S U(2) \times S U(2), K=\operatorname{diag}),
\end{aligned}
$$

$$
\ell:=|\widehat{G}(\pi, n)|=\operatorname{dim}\left(E^{M}\right) .
$$

- T_{n} restricts to an $\ell \times \ell$-matrix valued function on A
- T_{0} is invertible away from a few points
- $P_{n}(x)=T_{n}(a(x)) T_{0}^{-1}(a(x))$ is a matrix-valued polynomial of degree n for appropriate parametrization $a(x)$ of A

Properties

- $\operatorname{deg}\left(P_{n}(x)\right)=n$ with nonsingular leading coeff for all $n \geq 0$
- Orthogonality:

$$
\int P_{n}(x) W(x) P_{m}(x)^{*} d x=0, \quad W(x)=T_{0}(a(x)) T_{0}(a(x))^{*}
$$

- Eigenfunctions of second-order differential operator:

$$
P_{n}(x) \cdot T_{0}(a(x)) \Pi_{\tau}(C)^{*} T_{0}(a(x))^{-1}=\Lambda(n) P_{n}(x)
$$

NOTE: the right action is a convention for compatibility with noncommutative terms in the inner product

Outline

。

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
(2) The Matrix Bochner Problem
- The Problem
- Classification
(3) Consequences for Spherical Functions
- Weight matrix factorization
- Differential dependence

Matrix Bochner Problem

Problem

Classify all orthogonal matrix polynomials which are eigenfunctions of a second-order differential operator.

- Equiv. classify all weights $W(x)$
- More generally, calculate

$$
\mathcal{D}(W)=\left\{D: \exists \Lambda(n) \text { s.t. } P_{n}(x) \cdot D=\Lambda(n) P_{n}(x) \forall n\right\} .
$$

Classical (scalar) examples

- Hermite polynomials corresp. to weight $W(x)=e^{-x^{2}}$ are eigenfunctions of $\partial_{x}^{2}-2 x$
- Laguerre polynomials corresp. to weight $W(x)=x^{b} e^{-x} 1_{(0, \infty)}(x)$ are eigenfunctions of $\partial_{x}^{2} x+\partial_{x}(b+1-x)$
- Jacobi polynomials corresp. to weight $W(x)=(1-x)^{a}(1+x)^{b} 1_{(-1,1)}(x)$ are eigenfunctions of $\partial_{x}^{2}(1-x)^{2}+\partial_{x}(a-b-(a+b+2) x)$

Theorem (Bochner)

Up to affine trans. these are all possible cases which are 1×1

Outline

(1) Representation Theory and Orthogonal Matrix Polynomials - Spherical Functions

- Orthogonal Matrix Polynomials
(2) The Matrix Bochner Problem
- The Problem
- Classification
(3) Consequences for Spherical Functions
- Weight matrix factorization
- Differential dependence

The algebra $\mathcal{D}(W)$

- subalgebra of $M_{N}\left(\mathbb{C}\left[x, \partial_{x}\right]\right)^{o p}$
- closed under adjoint operation

$$
D \mapsto D^{\dagger}=W(x) D^{*} W(x)^{-1}
$$

- noncommutative, semiprime PI algebra
- finitely generated algebra over \mathbb{C} (nontrivial!)
- center $\mathcal{Z}(W)$ is finitely generated over \mathbb{C}

Local structure of $\mathcal{D}(W)$

- Ring of fractions

$$
\mathcal{F}(W)=\left\{B^{-1} A: A, B \in \mathcal{Z}(W), B \text { not a zero divisor }\right\}
$$

- $\mathcal{F}_{i}(W), i=1, \ldots, r$ fraction field of i 'th irred. component of $\operatorname{Spec}(\mathcal{Z}(W))$

Theorem (-, Yakimov 2018)

$$
\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_{i}}\left(\mathcal{F}_{i}(W)\right)
$$

Classification

- $n_{1}+\cdots+n_{r}$ is the rank of $\mathcal{D}(W)$ (bounded by ℓ)

Theorem (-,Yakimov 2018)

Let $W(x)$ be an $\ell \times \ell$ weight matrix solving Bochner, with $\mathcal{D}(W)$ having rank ℓ. Then

$$
W(x)=U(x) \operatorname{diag}\left(r_{1}(x), \ldots, r_{\ell}(x)\right) U(x)^{*}
$$

for some rational matrix $U(x)$ and some classical weights $r_{1}(x), \ldots, r_{\ell}(x)$ and

$$
P_{n}(x)=\operatorname{diag}\left(p_{1 n}(x), \ldots, p_{\ell, n}(x)\right) \cdot L
$$

for some differential operator L.

Outline

○

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix PolynomialsThe Matrix Bochner Problem
- The Problem
- Classification
(3) Consequences for Spherical Functions
- Weight matrix factorization
- Differential dependence

Weight matrix

- Recall from construction $\pi: K \rightarrow E=E n d(V)$ gave us $F_{\pi}^{\widetilde{\pi}}$ which gave us a matrix weight $W(x)=W_{\pi}(x)$.
- The above classification says

$$
W_{\pi}(x)=U_{\pi}(x) \operatorname{diag}\left(r_{1}(x), \ldots, r_{\ell}(x)\right) U_{\pi}(x)
$$

- This type factorization was observed previously in special cases, now explained!

Outline

○

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials

(2)
The Matrix Bochner Problem

- The Problem
- Classification
(3) Consequences for Spherical Functions
- Weight matrix factorization
- Differential dependence

Spherical functions

- $L=L_{\pi}$ conjugates $\widetilde{C}=T_{0}(x) \Pi_{\tau}(C)^{*} T_{0}(x)^{-1}$ to diagonal

$$
L_{\pi} \widetilde{C}=\operatorname{diag}\left(D_{1}, \ldots, D_{r}\right) L_{\pi}
$$

for some differential operators D_{1}, \ldots, D_{R}.

- therefore the images of the Casimir operators under the Π_{τ} are all related
- the derivatives of τ-spherical functions are also all related

Future work: try to understand the values of $U_{\pi}(x)$ and L_{π} from Lie theoretic perspective

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite J-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Koelink, Erik and van Pruijssen, Maarten and Román, Pablo. Matrix-valued orthogonal polynomials related to $(S U(2) \times S U(2)$, diag $)$, IMRN 2012

