Representation Theory and the Matrix Bochner Problem ICM 2018 Satellite Cusco

W.R. Casper

Department of Mathematics Louisiana State University

August 27, 2018

W.R. Casper Representation Theory and the Matrix Bochner Problem

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Introduction
- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

(4 間 きょうきょうきょう

Introduction Spherical Functions Orthogonal Matrix Polynomials

Outline

Representation Theory and Orthogonal Matrix PolynomialsIntroduction

- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

Introduction Spherical Functions Orthogonal Matrix Polynomials

Two very different topics

There is a surprising connection between two unlikely topics:

Topic 1: Irreducible unitary representations of Gelfand Pairs Certain nice pairs of Lie groups (G, K) with $K \subseteq G$ such as $(SU(2n+1), U(n)), (SO(n), SO(n-1)), (SU(2) \times SU(2), diag), ...$

Topic 2: Orthogonal Matrix Polynomials satisfying 2nd order matrix-valued differential equations

matrix-valued generalizations of the classical orthogonal polynomials of Hermite, Laguerre, and Jacobi.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Our topic

Introduction Spherical Functions Orthogonal Matrix Polynomials

- **One direction:** we can use the representation theory to construct examples of polynomials
- Opposite direction: the polynomials describe the analytic behavior of spherical functions on each Gelfand pair
 — spherical functions in turn describe the behavior of the matrix entries of irreducible unitary representations
- New result: classification of the orthogonal matrix polynomials satisfying 2nd order equations (ie. matrix Bochner problem)
- We will discuss this classification and how it might fit into the above relationship

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction Spherical Functions Orthogonal Matrix Polynomials

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Introduction
- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

Introduction Spherical Functions Orthogonal Matrix Polynomials

Multiplicity-free representations

For the puroposes of this talk

- G will be a real, compact, connected semisimple Lie group
- K will be a closed subgroup
- \widehat{G}, \widehat{K} dual objects

An irreducible unitary representation $\pi: G \to \operatorname{End}(V_{\pi})$ restricts to

$$\pi|_{\mathcal{K}} \cong \bigoplus_{[\tau]\in\widehat{\mathcal{K}}} \tau^{\oplus m_{\pi}([\tau])}.$$

Definition

An equivalence class $[\tau] \in \widehat{K}$ is **multiplicity free** if $m_{\pi}(\tau) \leq 1$ for all $[\pi] \in \widehat{G}$.

Introduction Spherical Functions Orthogonal Matrix Polynomials

Spherical function definition

Let $[\pi] \in \widehat{G}$ and $[\tau] \in \widehat{K}$ be multiplicity free with $m_{\pi}(\tau) = 1$ and $b: V_{\tau} \to V_{\pi}$ the corresponding unitary *K*-equivariant embedding with Hermitian adjoint $b^*: V_{\pi} \to V_{\tau}$. Then

$$\mathcal{F}^ au_\pi: \mathcal{G} o \mathsf{End}(V_ au), \;\; \mathcal{F}^ au_\pi(g) \mapsto b^*\pi(g)b$$

satisfies the property that

$$F(k_1gk_2) = \tau(k_1)F(g)\tau(k_2), \ \forall k_1, k_2 \in K, \ g \in G.$$

Definition

A function $F : G \to \text{End}(V_{\tau})$ satisfying Equation 1 is called a τ -spherical function.

Introduction Spherical Functions Orthogonal Matrix Polynomials

Elementary spherical functions

The space $C_{\tau}(G)$ of τ -spherical functions has an inner product

$$\langle F_1,F_2
angle:=\int_G \mathrm{Tr}(F_1(g)^*F_2(g))dg.$$

Definition

A spherical function of the form F_{π}^{τ} (as constructed in the previous slide) is called a **elementary spherical function**.

Theorem (van Pruijssen, Roman)

The elementary spherical functions form an orthonormal basis for $C_{\tau}(G)$.

Introduction Spherical Functions Orthogonal Matrix Polynomials

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Introduction
- Spherical Functions
- Orthogonal Matrix Polynomials
- 2) The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

Introduction Spherical Functions Orthogonal Matrix Polynomials

Zonal spherical functions

Definition

A **zonal spherical function** is a function in $C_1(G)$, ie. a function

$$f: G \rightarrow \mathbb{C}, f(k_1gk_2) = f(g) \ \forall k_1, k_2 \in K, g \in G.$$

If (G, K) is a compact, rank 1 Gelfand pair then $C_1(G)$ is a polynomial ring $C_1(G) = \mathbb{C}[\phi]$. The function ϕ is elementary and is called the **fundamental zonal spherical function**.

We assume moving forward that (G, K) is a compact, rank 1 Gelfand pair.

くロト (過) (目) (日)

Introduction Spherical Functions Orthogonal Matrix Polynomials

Degree map

• There exists $B(\tau) \subseteq \widehat{G}$ such that

$$\mathcal{C}_{ au}(\mathcal{G}) = igoplus_{[\pi] \in \mathcal{B}(au)} \mathbb{C}[\phi] \mathcal{F}_{\pi}^{ au}.$$

• More specifically for all $[\eta] \in \widehat{G}$ with $m_{\eta}(au) = 1$

$$\mathcal{F}^{ au}_\eta = \sum_{[\pi]\in \mathcal{B}(au)} oldsymbol{q}_{\eta,\pi}(\phi) \mathcal{F}^{ au}_\pi ~~ ext{for some}~oldsymbol{q}_{\eta,\pi}(\phi) \in \mathbb{C}[\phi]$$

Definition

We define the **degree** of $[\eta] \in \widehat{G}$ with $m_{\eta}(\tau) = 1$ to be

$$\deg([\eta]) = \max_{\pi \in \mathcal{B}(\tau)} (\deg q_{\eta,\pi}).$$

Introduction Spherical Functions Orthogonal Matrix Polynomials

Orthogonal polynomial definition

Minor miracle: For each $n \ge 0$ the set

$${oldsymbol B}(au,{oldsymbol n})=\{[\pi]\in \widehat{G}: m_{[\pi]}([au])={f 1}, \ {f deg}([\pi])={f n}\}$$

has order exactly $\ell := |B(\tau)|$.

Definition

For each $n \ge 0$, fix an ordering of $B(\tau, n)$ and define

$$\mathcal{P}_n(\phi) = [\mathcal{q}_{\eta,\pi}(\phi) : ([\eta], [\pi]) \in \mathcal{B}(\tau, n) \times \mathcal{B}(\tau)].$$

 $W(g) := [\operatorname{Tr}(F_{\pi}(g)^*F_{\pi'}(g)) : ([\pi], [\pi']) \in B(\tau) imes B(\tau)].$

Introduction Spherical Functions Orthogonal Matrix Polynomials

Orthogonal polynomial properties

deg(P_n(x)) = n with nonsingular leading coeff for all n ≥ 0
Orthogonality:

$$\int_{-1}^{1} P_n(x)^* W(x) P_m(x) (1-x)^{\alpha} (1+x)^{\beta} dx = 0.$$

for $(1 - x)^{\alpha}(1 + x)^{\beta}$ corresponding to the change of variables $x = c\phi + d$ where *c* and *d* are chosen so that $x : G \rightarrow [-1, 1]$ surjectively.

 The P_n(x) are all eigenfunctions of a second-order differential operator:

$$(1-x^2)P_n''(x) + (B_1x+B_0)P_n'(x) + CP_n(x) = P_n(x)\Lambda_n,$$

where here the $B_1, B_0, C, \Lambda_n \in M_{\ell}(\mathbb{C})$.

The Problem Classification

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Introduction
- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

The Problem Classification

Matrix Bochner problem

Problem

Classify all orthogonal matrix polynomials which are eigenfunctions of a second-order differential operator.

- Equiv. classify all weights W(x)
- More generally, calculate

$$\mathcal{D}(W) = \{ D : \exists \Lambda(n) \text{ s.t. } P_n(x) \cdot D = \Lambda(n)P_n(x) \forall n \}.$$

Classical (scalar) examples

- Hermite polynomials corresp. to weight $W(x) = e^{-x^2}$ are eigenfunctions of $\partial_x^2 2x$
- Laguerre polynomials corresp. to weight $W(x) = x^b e^{-x} 1_{(0,\infty)}(x)$ are eigenfunctions of $\partial_x^2 x + \partial_x (b+1-x)$
- Jacobi polynomials corresp. to weight $W(x) = (1 - x)^a (1 + x)^b 1_{(-1,1)}(x)$ are eigenfunctions of $\partial_x^2 (1 - x)^2 + \partial_x (a - b - (a + b + 2)x)$

Theorem (Bochner)

Up to affine trans. these are all possible cases which are 1×1

ヘロン 人間 とくほ とくほ とう

3

The Problem Classification

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Introduction
- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- 3 Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

The Problem Classification

The algebra $\mathcal{D}(W)$

- subalgebra of $M_N(\mathbb{C}[x,\partial_x])^{op}$
- closed under adjoint operation

$$D\mapsto D^{\dagger}=W(x)D^{*}W(x)^{-1}.$$

- noncommutative, semiprime PI algebra
- finitely generated algebra over \mathbb{C} (nontrivial!)
- center $\mathcal{Z}(W)$ is finitely generated over \mathbb{C}

The Problem Classification

Local structure of $\mathcal{D}(W)$

Ring of fractions

 $\mathcal{F}(W) = \{B^{-1}A : A, B \in \mathcal{Z}(W), B \text{ not a zero divisor}\}.$

\$\mathcal{F}_i(\mathcal{W})\$, \$i = 1, ..., \$r\$ fraction field of \$i\$ th irred. component of Spec(\$\mathcal{Z}(\mathcal{W})\$)

Theorem (-, Yakimov 2018)

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_i}(\mathcal{F}_i(W)).$$

イロト 不得 とくほと くほとう

3

Classification

The Problem Classification

• $n_1 + \cdots + n_r$ is the **rank** of $\mathcal{D}(W)$ (bounded by ℓ)

Theorem (-,Yakimov 2018)

Let W(x) be an $\ell \times \ell$ weight matrix solving Bochner, with $\mathcal{D}(W)$ having rank ℓ . Then

$$W(x) = U(x) diag(r_1(x), \ldots, r_\ell(x)) U(x)^*$$

for some rational matrix U(x) and some classical weights $r_1(x), \ldots, r_\ell(x)$ and

$$P_n(x) = diag(p_{1n}(x), \dots, p_{\ell,n}(x)) \cdot L$$

for some differential operator L.

< 口 > < 四 > < 三 > < 三 > < 三 >

Weight Matrix Factorization Differential Dependence

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Introduction
- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

Weight matrix

Weight Matrix Factorization Differential Dependence

- Recall that a fixed multiplicity free representation *τ* of *K* lead to a matrix weight *W*(*x*) = *W*_τ(*x*).
- The above classification says

$$W_{\tau}(x) = U_{\tau}(x) \operatorname{diag}(r_1(x), \ldots, r_{\ell}(x)) U_{\tau}(x)^*$$

• This type factorization was observed previously in special cases, now explained!

Weight Matrix Factorization Differential Dependence

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Introduction
- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification
- Consequences for Spherical Functions
 - Weight Matrix Factorization
 - Differential Dependence

Differential operator construction

- The polynomials of W_τ(x) are eigenfunctions of a 2nd order differential operator D_τ
- $D_{ au}$ is (essentially) given by a Casimir element $X \in U(\mathfrak{g}^{\mathbb{C}})^{K}$
- the action of X preserves τ -spherical functions

$$oldsymbol{X}\cdotoldsymbol{F}^{ au}_\eta = \sum_{\pi\inoldsymbol{B}(au)}oldsymbol{a}_{\eta,\pi}(\phi)oldsymbol{F}^\eta_\pi$$

- induces a map $\Pi_{\tau}(X) : \mathbb{C}[\phi]^{\oplus \ell} \to \mathbb{C}[\phi]^{\oplus \ell}$
- Π_τ(X) is a matrix differential operator (essentially the image of X under the Casselman-Miličić map)
- D_τ is obtained from Π_τ after conjugation and change of variable

ヘロト 人間 ト ヘヨト ヘヨト

Weight Matrix Factorization Differential Dependence

Diagonalization of differential operator

• L_{τ} diagonalizes D_{τ} :

$$L_{ au} D_{ au} = \operatorname{diag}(D_1, \ldots, D_\ell) L_{ au}$$

for some differential operators D_1, \ldots, D_ℓ .

- the values of $\Pi_{\tau}(X)$ are all related for different τ
- induces relationships between τ -spherical and μ -spherical functions for $[\tau], [\mu] \in \widehat{K}$

Future work: try to understand the values of $U_{\tau}(x)$ and L_{τ} from Lie theoretic perspective

ヘロト 人間 ト ヘヨト ヘヨト

Weight Matrix Factorization Differential Dependence

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite *J*-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- van Pruijssen, Marten and Román, Pablo. Matrix valued classical pairs related to compact Gelfand pairs of rank one, SIGMA 10 2014