The Matrix Bochner Problem OPSFA 2019 Hagenberg

W.R. Casper (joint with Milen Yakimov)

Department of Mathematics
Louisiana State University

July 25, 2019

Outline

(1) Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Consequences

Outline

(1) Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Consequences

The classical orthogonal polynomials

- Hermite polynomials

$$
\begin{gathered}
p_{\text {herm }}(x, n)^{\prime \prime}-2 x p_{\text {herm }}^{\prime}(x, n)=-2 n p_{\text {herm }}(x, n) \\
\int_{-\infty}^{\infty} p_{\text {herm }}(x, m) e^{-x^{2}} p_{\text {herm }}(x, n) d x=0 \text { for } m \neq n \\
p_{\text {herm }}(x, 0)=1 \\
p_{\text {herm }}(x, 1)=x \\
p_{\text {herm }}(x, 2)=x^{2}-1 \\
p_{\text {herm }}(x, 3)=x^{3}-3 x \\
p_{\text {herm }}(x, 4)=x^{4}-6 x^{2}+3
\end{gathered}
$$

The classical orthogonal polynomials

- Laguerre polynomials

$$
\begin{aligned}
& x p_{\mathrm{lag}}(x, n)^{\prime \prime}+(b+1-x) p_{\mathrm{lag}}^{\prime}(x, n)=-n p_{\mathrm{lag}}(x, n) \\
& \int_{0}^{\infty} p_{\mathrm{lag}}(x, m) x^{b} e^{-x} p_{\mathrm{lag}}(x, n) d x=0 \text { for } m \neq n \\
& p_{\mathrm{lag}}(x, 0)=1 \\
& p_{\mathrm{lag}}(x, 1)=-x+a+1 \\
& p_{\mathrm{lag}}(x, 2)=\frac{1}{2}\left(x^{2}-(2 b+4) x+(b+1)(b+2)\right)
\end{aligned}
$$

The classical orthogonal polynomials

- Jacobi polynomials

$$
\begin{gathered}
\left(1-x^{2}\right) p_{\mathrm{jac}}(x, n)^{\prime \prime}+(\beta-\alpha+(\beta+\alpha+2) x) p_{\mathrm{jac}}^{\prime}(x, n) \\
=\left(-n^{2}+(\beta+\alpha+1) n\right) p_{\mathrm{jac}}(x, n) \\
\int_{-1}^{1} p_{\mathrm{jac}}(x, m)(1-x)^{\alpha}(1+x)^{\beta} p_{\mathrm{jac}}(x, n) d x=0 \text { for } m \neq n \\
p_{\mathrm{jac}}(x, 0)=1 \\
p_{\mathrm{jac}}(x, 1)=\frac{\alpha+\beta+2}{2} x-\frac{\beta-\alpha}{2}
\end{gathered}
$$

Bochner's Theorem

Theorem (Bochner 1929)

Up to affine transformation, the only orthogonal polynomials on
\mathbb{R} which are eigenfunctions of a second order differential operator are the classical orthogonal polynomials: the Hermite, Laguerre, and Jacobi polynomials.

Generalizations???

- exceptional orthogonal polynomials
- multi-variate versions
- discrete versions (with difference operators)
- matrix orthogonal polynomials

Outline

(1) Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Consequences

Matrix orthogonality

Definition

A weight matrix is a function $W(x): \mathbb{R} \rightarrow M_{N}(\mathbb{C})$ which is smooth, positive definite, and Hermitian on an interval (x_{0}, x_{1}) and zero outside of (x_{0}, x_{1}) and which has finite moments.

A matrix-valued inner product on $N \times N$ matrix-valued polynomials:

$$
\langle P(x), Q(x)\rangle_{w}=\int P(x) W(x) Q(x)^{*} d x
$$

More generally, we can replace $W(x) d x$ with a wilder matrix-valued measure.

Orthogonal Matrix Polynomials

Definition (Kreĭn 1949)

A sequence of orthogonal matrix polynomials for a weight $W(x)$ is a sequence $P(x, n)$ of $N \times N$ matrix-valued polynomials

- $\operatorname{deg}(P(x, n))=n$ with nonsingular leading coefficient
- $\langle P(x, m), P(x, n)\rangle w=0$ for $m \neq n$
- Polynomials are unique if normalized or monic

Generalization of classical orthogonal polynomials

Question

Are there interesting matrix generalzations of the classical orthogonal polynomials?

- Matrix-valued orthogonal polynomials for a weight $W(x)$
- Eigenfunctions of some second-order differential equation

$$
\frac{d^{2}}{d x^{2}} P(x, n) A_{2}(x)+\frac{d}{d x} P(x, n) A_{1}(x)+P(x, n) A_{0}(x)=\Lambda(n) P(x, n)
$$

- left vs. right multiplication is very important!!

The Matrix Bochner problem

Problem (Matrix Bochner problem)

Find all weight matrices $W(x)$ whose sequences of orthogonal matrix polynomials $P(x, n)$ satisfy a second-order differential equation

$$
\frac{d^{2}}{d x^{2}} P(x, n) A_{2}(x)+\frac{d}{d x} P(x, n) A_{1}(x)+P(x, n) A_{0}(x)=\Lambda(n) P(x, n)
$$

for some matrix-valued functions $A_{i}(x)$ and matrices $\Lambda(n)$.
In terms of right-acting operators:

$$
P(x, n) \cdot \mathfrak{D}=\Lambda(n) P(x, n), \quad \mathfrak{D}=\partial_{x}^{2} A_{2}(x)+\partial_{x} A_{1}(x)+A_{0}(x)
$$

Bochner pairs

- By a result of Grünbaum and Tirao, we can take \mathfrak{D} to be W-symmetric:

$$
\langle P(x) \cdot \mathfrak{D}, Q(x)\rangle_{w}=\langle P(x), Q(x) \cdot \mathfrak{D}\rangle_{w}
$$

Definition

A Bochner pair is a pair $(W(x), \mathfrak{D})$ with $W(x)$ a weight matrix and \mathfrak{D} a W-symmetric second order differential operator.

Problem (Matrix Bochner problem)

Classify all matrix Bochner pairs.

Examples

[Hermite-type:]

$$
\begin{aligned}
& \mathfrak{D}=\partial_{x}^{2} I+\partial_{x}\left(\begin{array}{cc}
a-2 x & 4 b(2-a(a+2 x)) \\
0 & -a-2 x
\end{array}\right)+\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& W(x)=\left(\begin{array}{cc}
4 b^{2}(a+2 x)^{2}+16 e^{2 a x} & 2 b(a+2 x) \\
2 b(a+2 x) & 1
\end{array}\right) e^{-x^{2}-a x}
\end{aligned}
$$

Examples

[Laguerre-type:]

$$
\begin{gathered}
\mathfrak{D}=\partial_{x}^{2} x I+\partial_{x}\left(\begin{array}{cc}
b+a+2-x & a+2-(a / b) x \\
0 & b-x
\end{array}\right)+\left(\begin{array}{cc}
-1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right) \\
W(x)=\left(\begin{array}{cc}
c x^{a+2}+(b-x)^{2} & -b(b-x) \\
-b(b-x) & b^{2}
\end{array}\right) x^{b-1} e^{-x} .
\end{gathered}
$$

Examples

[Jacobi-type:]

$$
\begin{aligned}
& \alpha=d\left(-b^{2} c^{2}+b^{2}+1+b c\left(b^{2} c^{2}+b^{2}-1\right)\right) / 2-1 \\
& \beta=d\left(-b^{2} c^{2}+b^{2}+1-b c\left(b^{2} c^{2}+b^{2}-1\right)\right) / 2-1 \\
& \mathfrak{D}=\partial_{x}^{2}\left(1-x^{2}\right) I-\partial_{x} x(\alpha+\beta+4) I \\
&+\partial_{x}\left(\begin{array}{cc}
x(\beta-\alpha) d-2 b c & -2 b \\
2 b c^{2}-2 / b & x(\beta-\alpha) d+2 b c)
\end{array}\right) \\
&+\frac{d}{2}\left(b^{2} c^{2}+b^{2}-1\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& W(x)=(1-x)^{\alpha}(1+x)^{\beta}\left(\begin{array}{cc}
b^{2}+(x-b c)^{2} \\
(\beta-\alpha) / b-\frac{\alpha+b+2 x}{b+x} & b^{2} c^{(\beta-\alpha-\alpha) / b-2 c^{2}+1 / b^{2}+(x+2+b c)^{2}}
\end{array}\right)
\end{aligned}
$$

Examples

[Jacobi-type:]

$$
\left.\begin{array}{c}
\alpha=a-1-a^{2} b^{2} c / 2 \\
\beta=c-1+a^{2} b^{2} c / 2 \\
\mathfrak{D}=\partial_{x}^{2}\left(1-x^{2}\right) I-\partial_{x} x\left(\begin{array}{cc}
\alpha+\beta+4 & -b c \\
0 & \alpha+\beta+3
\end{array}\right) \\
+\partial_{x}\left(\begin{array}{cc}
\beta-\alpha-a b^{2} c+2 & a b^{3} c^{2}-3 b c \\
-a b & \beta-\alpha+a b^{2} c-1
\end{array}\right)-\frac{a}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
w(x)=(1-x)^{\alpha}(1+x)^{\beta}\left(\begin{array}{cc}
(\beta-\alpha-\alpha))^{2} c-(\beta+\alpha+2+a) b^{2} x+(x+1)^{2} \\
b(\beta-\alpha-(\alpha+\beta+2) x)
\end{array}\right. \\
b(\beta-\alpha-(\alpha+\beta+2) x) \\
\lambda^{2} b^{2}+1-x
\end{array}\right) . ~ l
$$

New phenomena

- cone of weights

$$
\operatorname{Cone}(\mathfrak{D})=\{W(x):(W(x), \mathfrak{D}) \text { is a Bochner pair }\}
$$

- algebra of operators

$$
\mathcal{D}(W)=\{\mathfrak{D}: \exists \Lambda(n) \text { with } P(x, n) \cdot \mathfrak{D}=\Lambda(n) P(x, n)\}
$$

- in scalar case $\mathcal{D}(r)=\mathbb{C}[\mathfrak{d}]$
- in the matrix case, $\mathcal{D}(W)$ can have interesting noncommutative structure!!

Example

- Consider the weight matrix

$$
W(x)=e^{-x^{2}}\left(\begin{array}{cc}
1+a^{2} x^{2} & a x \\
a x & 1
\end{array}\right)
$$

- $\mathcal{D}(W)$ is generated by four noncommuting operators

$$
\begin{aligned}
& \mathfrak{D}_{1}=\partial_{x}^{2} I+\partial_{x}\left(\begin{array}{cc}
-2 x & a \\
0 & -2 x
\end{array}\right)+\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{2}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} / 4 & a^{3} x / 4 \\
0 & 0
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
0 & a / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \mathfrak{D}_{3}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} x / 2 & a^{3} x^{2} / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-\left(a^{2}+1\right) & a\left(a^{2}+2\right) \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & a+2 / a \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{4}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{3} x / 4 & a^{2}\left(a^{2} x^{2}-1\right) / 4 \\
-a^{2} / 4 & a^{3} x / 4
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-a^{3} / 2 & a^{2}\left(a^{2}+2\right) x / 2 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & a^{2} / 2+1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Outline

(1) Orthogonal matrix polynomials - Classical orthogonal polynomials - Orthogonal matrix polynomials

(2) The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Consequences

Algebras determine operators!

Consider an algebra of differential operators \mathcal{A} with
(1) \mathcal{A} commutative
(2) \mathcal{A} contains a Schrödinger operator

$$
\partial_{x}^{2}+u(x)
$$

Theorem

If \mathcal{A} contains an operator of order 3 then u satisfies the stationary KdV equation

$$
\frac{1}{2} u^{\prime \prime \prime}(x)=6 u u^{\prime}(x) .
$$

Krichever correspondence

Consider an algebra of differential operators \mathcal{A} with
(1) \mathcal{A} commutative
(2) \mathcal{A} contains operators of order m and n with $\operatorname{gcd}(m, n)=1$

\mathcal{A}	\longleftrightarrowalgebraic curve \mathcal{C} with line bundle \mathcal{L}
$\mathfrak{d} \in \mathcal{A}$	$\longleftrightarrow p \in \mathcal{C}$

(dual of) kernel of $\mathfrak{d} \longleftrightarrow$ stalk of \mathcal{L} over p
$\underset{\substack{\text { isospectral } \\ \text { deformations }}}{ } \longleftrightarrow$ jacobian of \mathcal{C}

Problems in the matrix case

- $\mathcal{D}(W)$ is noncommutative!
- how do we study $\mathcal{D}(W)$ geometrically?

Theorem (Casper-Yakimov)

The algebra $\mathcal{D}(W)$ is finite as a module over its center $\mathcal{Z}(W)$ and $\mathcal{Z}(W)$ is Noetherian
this requires some tough technology to prove

- Idea: study the generic structure of $\mathcal{D}(W)$ over $\mathcal{Z}(W)$
- What does $\mathcal{D}(W)$ look like locally?

Generic structure

Theorem (Posner)

A prime PI algebra is generically a central simple algebra over its center.

- our algebra $\mathcal{D}(W)$ is a Pl algebra (embeds into a matrix ring)
- unfortunately it is not prime
- it is semiprime and Krull dimension 1

Theorem (Casper-Yakimov)

$$
\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_{i}}\left(\mathcal{F}_{i}(W)\right)
$$

Outline

(1) Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Consequences

Noncommutative bispectral Darboux transformations

- $W(x) \mapsto \widetilde{W}(x)$
- $P(x, n) \mapsto \tilde{P}(x, n)$

$$
\begin{gathered}
\widetilde{P}(x, n)=C(n)^{-1} P(x, n) \cdot \mathfrak{U} \text { and } P(x, n)=\widetilde{C}(n)^{-1} \widetilde{P}(x, n) \cdot \widetilde{\mathfrak{U}} \\
P(x, n) \cdot(\mathfrak{U} \widetilde{\mathfrak{U})}=C(n) \widetilde{C}(n) P(x, n) . \\
P(x, n) \cdot(\widetilde{\mathfrak{U} U})=\widetilde{C}(n) C(n) P(x, n) .
\end{gathered}
$$

Definition

$\widetilde{W}(x)$ is a noncomm. bispectral Darboux trans. of $W(x)$

Full weights

Definition

The module rank of $\mathcal{D}(W)$ is $n_{1}+n_{2}+\cdots+n_{r}$ from the previous theorem. If the rank is N, we say that $W(x)$ is full.

Theorem (Casper-Yakimov)

If $W(x)$ is full, then $W(x)$ is a noncommutative bispectral Darboux transformation of a direct sum of classical weights.

$$
\begin{gathered}
W(x)=T(x) \operatorname{diag}\left(r_{1}(x), r_{2}(x), \ldots, r_{n}(x)\right) T(x)^{*} \\
C(n) P(x, n)=\operatorname{diag}\left(p_{1}(x, n), p_{2}(x, n), \ldots, p_{N}(x, n)\right) \cdot \mathfrak{U} .
\end{gathered}
$$

Sketch of proof

- fullness means we can choose nonzero

$$
\mathfrak{V}_{1}, \ldots, \mathfrak{V}_{N} \in \mathcal{D}(W) \text { with }
$$

$$
\mathfrak{V}_{i} \mathfrak{V}_{j}=0, \quad i \neq j .
$$

- can take the \mathfrak{V}_{i} to be W-symmetric
- define modules

$$
\mathcal{M}_{i}=\left\{\overrightarrow{\mathfrak{w}} \in \Omega(x)^{\oplus N}: \overrightarrow{\mathfrak{w}}^{T} \mathfrak{V}_{j}=\overrightarrow{0}^{T} \forall j \neq i\right\}
$$

- $\Omega(x)$, the algebra of differential operators with rational coefficients, is a noncommutative PID:

$$
\mathcal{M}_{i}=\Omega(x) \overrightarrow{\mathfrak{u}_{i}}
$$

Sketch of proof

- using \mathcal{M}_{i}, define a matrix differential operator

$$
\begin{aligned}
& \mathfrak{U}=\left[\overrightarrow{\mathfrak{u}_{1}} \overrightarrow{\mathfrak{u}_{2}} \ldots \overrightarrow{\mathfrak{u}_{N}}\right]^{T}, \quad \overrightarrow{\mathfrak{u}_{i}}=\sum_{j=0}^{\ell_{i}} \partial_{x}^{j} \vec{u}_{j i}(x) \\
& U(x)=\left[\vec{u}_{\ell_{1} 1}(x) \vec{u}_{\ell_{2} 2}(x) \ldots \vec{u}_{\ell_{N} N}(x)\right]^{T}
\end{aligned}
$$

- Then
$R(x):=U(x) W(x) U(x)^{*}=\operatorname{diag}\left(r_{1}(x), \ldots, r_{N}(x)\right)$ is diagonal.
$\mathfrak{U} W(x) \mathfrak{U}^{*} R(x)^{-1}=\operatorname{diag}\left(\mathfrak{d}_{1}, \mathfrak{d}_{2}, \ldots, \mathfrak{d}_{N}\right)$.

Sketch of proof

- $p_{i}(x, n)$ the sequence of orthogonal polys for $r_{i}(x)$
- then sequence of matrix-valued functions

$$
P(x, n)=\operatorname{diag}\left(p_{1}(x, n), p_{2}(x, n), \ldots, p_{N}(x, n)\right) \cdot \mathfrak{U}
$$

- satisfies

$$
\begin{gathered}
P(x, n) \cdot W(x) \mathfrak{U}^{*} R(x)^{-1} \mathfrak{U}=\operatorname{diag}\left(\lambda_{1}(n), \ldots, \lambda_{N}(n)\right) P(x, n) \\
\int P(x, m) W(x) P(x, n)^{*} d x=0, \quad m \neq n
\end{gathered}
$$

Example

- Consider the weight matrix

$$
W(x)=e^{-x^{2}}\left(\begin{array}{cc}
1+a^{2} x^{2} & a x \\
a x & 1
\end{array}\right)
$$

- $\mathcal{D}(W)$ contains

$$
\begin{aligned}
& \mathfrak{D}_{1}=\partial_{x}^{2} I+\partial_{x}\left(\begin{array}{cc}
-2 x & a \\
0 & -2 x
\end{array}\right)+\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{2}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} / 4 & a^{3} x / 4 \\
0 & 0
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
0 & a / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \mathfrak{D}_{3}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} x / 2 & a^{3} x^{2} / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-\left(a^{2}+1\right) & a\left(a^{2}+2\right) \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & a+2 / a \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{4}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{3} x / 4 & a^{2}\left(a^{2} x^{2}-1\right) / 4 \\
-a^{2} / 4 & a^{3} x / 4
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-a^{3} / 2 & a^{2}\left(a^{2}+2\right) x / 2 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & a^{2} / 2+1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Example

- we have $\mathfrak{V}_{1} \mathfrak{V}_{2}=0$ for

$$
\mathfrak{V}_{1}=\mathfrak{D}_{2}, \quad \mathfrak{V}_{2}=a^{2} \mathfrak{D}_{1}+4 \mathfrak{D}_{2}-4 I
$$

- the modules are

$$
\mathcal{M}_{1}=\Omega(x)\binom{\partial_{x} a / 2}{-\partial_{x} a^{2} x / 2-1}, \quad \mathcal{M}_{2}=\Omega(x)\binom{-1}{\partial_{x} a / 2}
$$

- therefore

$$
\mathfrak{U}=\left(\begin{array}{cc}
\partial_{x} a / 2 & -\partial_{x} a^{2} x / 2-1 \\
-1 & \partial_{x} a / 2
\end{array}\right), \quad U(x)=\left(\begin{array}{cc}
a / 2 & -a^{2} x / 2 \\
0 & a / 2
\end{array}\right) .
$$

Example

- the weight satisfies

$$
R(x)=U(x) W(x) U(x)^{*}=\left(a^{2} / 4\right) e^{-x^{2}} I
$$

- so $W(x)$ is a noncommutative bispectral Darboux transformation of the Hermite weight
- orthogonal matrix polynomials for $W(x)$ are given in terms of Hermite polynomials by

$$
P(x, n):=p_{\text {herm }}(x, n) / \cdot \mathfrak{U},
$$

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite J-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Grünbaum, Alberto and Tirao, Juan. The Algebra of Differential Operators Associated to a Weight Matrix. J. Integr. equ. oper. theory (2007) 58: 449.

