The Matrix Bochner Problem OPSFA 2019 Hagenberg

W.R. Casper (joint with Milen Yakimov)

Department of Mathematics Louisiana State University

July 25, 2019

ヘロト ヘアト ヘビト ヘビト

Outline

Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Consequences

→ Ξ → < Ξ →</p>

Classical orthogonal polynomials Orthogonal matrix polynomials

Outline

1 Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Consequences

イロト イポト イヨト イヨト

æ

The classical orthogonal polynomials

• Hermite polynomials

$$p_{\text{herm}}(x,n)'' - 2xp'_{\text{herm}}(x,n) = -2np_{\text{herm}}(x,n)$$

 $\int_{-\infty}^{\infty} p_{\text{herm}}(x,m)e^{-x^2}p_{\text{herm}}(x,n)dx = 0 \text{ for } m \neq n$

$$p_{herm}(x, 0) = 1$$

 $p_{herm}(x, 1) = x$
 $p_{herm}(x, 2) = x^2 - 1$
 $p_{herm}(x, 3) = x^3 - 3x$
 $p_{herm}(x, 4) = x^4 - 6x^2 + 3$

<ロト <回 > < 注 > < 注 > 、

The classical orthogonal polynomials

Laguerre polynomials

$$xp_{\mathsf{lag}}(x,n)'' + (b+1-x)p'_{\mathsf{lag}}(x,n) = -np_{\mathsf{lag}}(x,n)$$

 $\int_0^\infty p_{\mathsf{lag}}(x,m)x^b e^{-x}p_{\mathsf{lag}}(x,n)dx = 0 ext{ for } m \neq n$

$$p_{lag}(x,0) = 1$$

$$p_{lag}(x,1) = -x + a + 1$$

$$p_{lag}(x,2) = \frac{1}{2}(x^2 - (2b+4)x + (b+1)(b+2))$$

・ロト ・ 理 ト ・ ヨ ト ・

The classical orthogonal polynomials

Jacobi polynomials

$$(1 - x^2)p_{jac}(x, n)'' + (\beta - \alpha + (\beta + \alpha + 2)x)p'_{jac}(x, n)$$
$$= (-n^2 + (\beta + \alpha + 1)n)p_{jac}(x, n)$$

$$\int_{-1}^{1} p_{jac}(x,m)(1-x)^{\alpha}(1+x)^{\beta} p_{jac}(x,n) dx = 0 \text{ for } m \neq n$$

$$p_{\text{jac}}(x,0) = 1$$

 $p_{\text{jac}}(x,1) = rac{lpha + eta + 2}{2}x - rac{eta - lpha}{2}$

ヘロト 人間 とくほとくほとう

Bochner's Theorem

Theorem (Bochner 1929)

Up to affine transformation, the only orthogonal polynomials on \mathbb{R} which are eigenfunctions of a second order differential operator are the classical orthogonal polynomials: the Hermite, Laguerre, and Jacobi polynomials.

Generalizations???

- exceptional orthogonal polynomials
- multi-variate versions
- discrete versions (with difference operators)
- matrix orthogonal polynomials

ヘロト ヘアト ヘビト ヘビト

Outline

Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Consequences

くロト (過) (目) (日)

Matrix orthogonality

Definition

A weight matrix is a function $W(x) : \mathbb{R} \to M_N(\mathbb{C})$ which is smooth, positive definite, and Hermitian on an interval (x_0, x_1) and zero outside of (x_0, x_1) and which has finite moments.

A matrix-valued inner product on $N \times N$ matrix-valued polynomials:

$$\langle P(x), Q(x) \rangle_W = \int P(x) W(x) Q(x)^* dx.$$

More generally, we can replace W(x)dx with a wilder matrix-valued measure.

ヘロト 人間 ト ヘヨト ヘヨト

Orthogonal matrix polynomials The Algebra $\mathcal{D}(W)$ Classical orthogonal polynomials Orthogonal matrix polynomials

Orthogonal Matrix Polynomials

Definition (Kreĭn 1949)

A sequence of orthogonal matrix polynomials for a weight W(x) is a sequence P(x, n) of $N \times N$ matrix-valued polynomials

• deg(P(x, n)) = n with nonsingular leading coefficient

•
$$\langle P(x,m), P(x,n) \rangle_W = 0$$
 for $m \neq n$

• Polynomials are unique if normalized or monic

ヘロト 人間 ト ヘヨト ヘヨト

Generalization of classical orthogonal polynomials

Question

Are there interesting matrix generalzations of the classical orthogonal polynomials?

- Matrix-valued orthogonal polynomials for a weight W(x)
- Eigenfunctions of some second-order differential equation

$$\frac{d^2}{dx^2}P(x,n)A_2(x) + \frac{d}{dx}P(x,n)A_1(x) + P(x,n)A_0(x) = \Lambda(n)P(x,n)$$

• left vs. right multiplication is very important!!

イロト イポト イヨト イヨト

The Matrix Bochner problem

Problem (Matrix Bochner problem)

Find all weight matrices W(x) whose sequences of orthogonal matrix polynomials P(x, n) satisfy a second-order differential equation

$$\frac{d^2}{dx^2}P(x,n)A_2(x) + \frac{d}{dx}P(x,n)A_1(x) + P(x,n)A_0(x) = \Lambda(n)P(x,n)$$

for some matrix-valued functions $A_i(x)$ and matrices $\Lambda(n)$.

In terms of right-acting operators:

$$P(x,n) \cdot \mathfrak{D} = \Lambda(n)P(x,n), \ \mathfrak{D} = \partial_x^2 A_2(x) + \partial_x A_1(x) + A_0(x).$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Bochner pairs

 By a result of Grünbaum and Tirao, we can take D to be W-symmetric:

$$\langle P(x) \cdot \mathfrak{D}, Q(x) \rangle_W = \langle P(x), Q(x) \cdot \mathfrak{D} \rangle_W.$$

Definition

A **Bochner pair** is a pair $(W(x), \mathfrak{D})$ with W(x) a weight matrix and \mathfrak{D} a *W*-symmetric second order differential operator.

Problem (Matrix Bochner problem)

Classify all matrix Bochner pairs.

イロト イポト イヨト イヨト

[Hermite-type:]

$$\mathfrak{D} = \partial_x^2 I + \partial_x \left(\begin{array}{cc} a - 2x & 4b(2 - a(a + 2x)) \\ 0 & -a - 2x \end{array} \right) + \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right)$$
$$W(x) = \left(\begin{array}{cc} 4b^2(a + 2x)^2 + 16e^{2ax} & 2b(a + 2x) \\ 2b(a + 2x) & 1 \end{array} \right) e^{-x^2 - ax}$$

ヘロト 人間 とくほとくほとう

₹ 990

.

∃ 𝒫𝔄𝔅

[Laguerre-type:]

Examples

$$\mathfrak{D} = \partial_x^2 x I + \partial_x \left(\begin{array}{cc} b + a + 2 - x & a + 2 - (a/b)x \\ 0 & b - x \end{array} \right) + \left(\begin{array}{c} -1/2 & 0 \\ 0 & 1/2 \end{array} \right)$$
$$W(x) = \left(\begin{array}{c} cx^{a+2} + (b-x)^2 & -b(b-x) \\ -b(b-x) & b^2 \end{array} \right) x^{b-1} e^{-x}.$$

ヘロト 人間 とくほとくほとう

[Jacobi-type:]

$$\alpha = d(-b^2c^2 + b^2 + 1 + bc(b^2c^2 + b^2 - 1))/2 - 1$$

$$\beta = d(-b^2c^2 + b^2 + 1 - bc(b^2c^2 + b^2 - 1))/2 - 1$$

$$\begin{split} \mathfrak{D} &= \partial_x^2 (1-x^2)I - \partial_x x (\alpha+\beta+4)I \\ &+ \partial_x \left(\begin{array}{cc} x(\beta-\alpha)d - 2bc & -2b \\ 2bc^2 - 2/b & x(\beta-\alpha)d + 2bc) \end{array} \right) \\ &+ \frac{d}{2} (b^2c^2 + b^2 - 1) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \end{split}$$

$$W(x) = (1-x)^{\alpha} (1+x)^{\beta} \begin{pmatrix} b^2 + (x-bc)^2 & (\beta-\alpha)/b - \frac{\alpha+\beta+2}{bd}x \\ (\beta-\alpha)/b - \frac{\alpha+\beta+2}{bd}x & b^2c^4 - 2c^2 + 1/b^2 + (x+bc)^2 \end{pmatrix}$$

ヘロト 人間 とくほとくほとう

₹ 990

[Jacobi-type:]

$$\alpha = \mathbf{a} - \mathbf{1} - \mathbf{a}^2 \mathbf{b}^2 \mathbf{c} / \mathbf{2}$$
$$\beta = \mathbf{c} - \mathbf{1} + \mathbf{a}^2 \mathbf{b}^2 \mathbf{c} / \mathbf{2}$$

$$\mathfrak{D} = \partial_x^2 (1 - x^2) I - \partial_x x \begin{pmatrix} \alpha + \beta + 4 & -bc \\ 0 & \alpha + \beta + 3 \end{pmatrix}$$
$$+ \partial_x \begin{pmatrix} \beta - \alpha - ab^2c + 2 & ab^3c^2 - 3bc \\ -ab & \beta - \alpha + ab^2c - 1 \end{pmatrix} - \frac{a}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$W(x) = (1 - x)^{\alpha} (1 + x)^{\beta} \begin{pmatrix} (\beta - \alpha - a)b^2c - (\beta + \alpha + 2 + a)cb^2x + (x + 1)^2 & b(\beta - \alpha - (\alpha + \beta + 2)x) \\ -ab & ab \end{pmatrix}$$

$$V(x) = (1-x)^{\alpha}(1+x)^{\beta} \begin{pmatrix} (\beta - \alpha - a)b^{\beta}c - (\beta + \alpha + 2 + a)cb^{\beta}x + (x+1)^{2} & b(\beta - \alpha - (\alpha + \beta + 2)x) \\ b(\beta - \alpha - (\alpha + \beta + 2)x) & a^{2}b^{2} + 1 - x \end{pmatrix}$$

ヘロト 人間 とくほとくほとう

New phenomena

• cone of weights

 $Cone(\mathfrak{D}) = \{W(x) : (W(x), \mathfrak{D}) \text{ is a Bochner pair}\}.$

• algebra of operators

 $\mathcal{D}(W) = \{\mathfrak{D} : \exists \Lambda(n) \text{ with } P(x, n) \cdot \mathfrak{D} = \Lambda(n)P(x, n)\}.$

- in scalar case $\mathcal{D}(r) = \mathbb{C}[\mathfrak{d}]$
- in the matrix case, D(W) can have interesting noncommutative structure!!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Consider the weight matrix

$$W(x)=e^{-x^2}\left(egin{array}{cc} 1+a^2x^2&ax\ax&1\end{array}
ight).$$

• $\mathcal{D}(W)$ is generated by four noncommuting operators

$$\begin{split} \mathfrak{D}_{1} &= \partial_{x}^{2} I + \partial_{x} \left(\begin{array}{cc} -2x & a \\ 0 & -2x \end{array} \right) + \left(\begin{array}{cc} -2 & 0 \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{2} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}/4 & a^{3}x/4 \\ 0 & 0 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} 0 & a/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \\ \mathfrak{D}_{3} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}x/2 & a^{3}x^{2}/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -(a^{2}+1) & a(a^{2}+2) \\ 0 & 1 \end{array} \right) + \left(\begin{array}{cc} 0 & a+2/a \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{4} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{3}x/4 & a^{2}(a^{2}x^{2}-1)/4 \\ -a^{2}/4 & a^{3}x/4 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -a^{3}/2 & a^{2}(a^{2}+2)x/2 \\ 0 & 0 \end{array} \right) + \left(\begin{array}{cc} 0 & a^{2}/2+1 \\ 1 & 0 \end{array} \right) \end{split}$$

ヘロト 人間 ト ヘヨト ヘヨト

Outline

Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Consequences

くロト (過) (目) (日)

Algebras determine operators!

Consider an algebra of differential operators $\ensuremath{\mathcal{A}}$ with

- A commutative
- A contains a Schrödinger operator

$$\partial_x^2 + u(x)$$

Theorem

If \mathcal{A} contains an operator of order 3 then u satisfies the stationary KdV equation

$$\frac{1}{2}u'''(x) = 6uu'(x).$$

くロト (過) (目) (日)

Krichever correspondence

Consider an algebra of differential operators $\ensuremath{\mathcal{A}}$ with

- A commutative
- 2 A contains operators of order m and n with gcd(m, n) = 1

$$\begin{array}{ccc} \mathcal{A} & \longleftrightarrow & \begin{array}{c} \mbox{algebraic curve } \mathcal{C} \\ \mbox{with line bundle } \mathcal{L} \end{array} \\ \mathfrak{d} \in \mathcal{A} & \longleftrightarrow & p \in \mathcal{C} \end{array}$$

$$(\mbox{dual of) kernel of } \mathfrak{d} & \longleftrightarrow & \mbox{stalk of } \mathcal{L} \mbox{ over } p \end{array}$$

$$\begin{array}{c} \mbox{isospectral} \\ \mbox{deformations} \end{array} & \longleftrightarrow & \mbox{jacobian of } \mathcal{C} \end{array}$$

ヘロン 人間 とくほ とくほ とう

Problems in the matrix case

- $\mathcal{D}(W)$ is noncommutative!
- how do we study $\mathcal{D}(W)$ geometrically?

Theorem (Casper-Yakimov)

The algebra $\mathcal{D}(W)$ is finite as a module over its center $\mathcal{Z}(W)$ and $\mathcal{Z}(W)$ is Noetherian

this requires some tough technology to prove

- Idea: study the *generic* structure of $\mathcal{D}(W)$ over $\mathcal{Z}(W)$
- What does $\mathcal{D}(W)$ look like *locally*?

ヘロン 人間 とくほ とくほ とう

Generic structure

Theorem (Posner)

A prime PI algebra is generically a central simple algebra over its center.

- our algebra $\mathcal{D}(W)$ is a PI algebra (embeds into a matrix ring)
- unfortunately it is not prime
- it is semiprime and Krull dimension 1

Theorem (Casper-Yakimov)

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_i}(\mathcal{F}_i(W)).$$

ヘロト ヘアト ヘビト ヘ

.≣⇒

Outline

Orthogonal matrix polynomials

- Classical orthogonal polynomials
- Orthogonal matrix polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Consequences

イロト イポト イヨト イヨト

Noncommutative bispectral Darboux transformations

•
$$W(x) \mapsto \widetilde{W}(x)$$

•
$$P(x,n) \mapsto \widetilde{P}(x,n)$$

$$\widetilde{P}(x,n) = C(n)^{-1}P(x,n)\cdot\mathfrak{U}$$
 and $P(x,n) = \widetilde{C}(n)^{-1}\widetilde{P}(x,n)\cdot\widetilde{\mathfrak{U}}$
 $P(x,n)\cdot(\mathfrak{U}\widetilde{\mathfrak{U}}) = C(n)\widetilde{C}(n)P(x,n).$
 $P(x,n)\cdot(\widetilde{\mathfrak{U}}\mathfrak{U}) = \widetilde{C}(n)C(n)P(x,n).$

Definition

 $\widetilde{W}(x)$ is a noncomm. bispectral Darboux trans. of W(x)

ヘロン ヘアン ヘビン ヘビン

Full weights

Definition

The **module rank** of $\mathcal{D}(W)$ is $n_1 + n_2 + \cdots + n_r$ from the previous theorem. If the rank is *N*, we say that W(x) is **full**.

Theorem (Casper-Yakimov)

If W(x) is full, then W(x) is a noncommutative bispectral Darboux transformation of a direct sum of classical weights.

 $W(x) = T(x) diag(r_1(x), r_2(x), ..., r_n(x)) T(x)^*.$

 $C(n)P(x,n) = diag(p_1(x,n), p_2(x,n), \ldots, p_N(x,n)) \cdot \mathfrak{U}.$

イロト 不得 とくほ とくほ とうほ

Sketch of proof

• fullness means we can choose nonzero $\mathfrak{V}_1, \ldots, \mathfrak{V}_N \in \mathcal{D}(W)$ with

$$\mathfrak{V}_i\mathfrak{V}_j=\mathbf{0}, \ i\neq j.$$

- can take the \mathfrak{V}_i to be *W*-symmetric
- define modules

$$\mathcal{M}_i = \{ \vec{\mathfrak{w}} \in \Omega(\boldsymbol{x})^{\oplus N} : \vec{\mathfrak{w}}^T \mathfrak{V}_j = \vec{0}^T \ \forall j \neq i \}.$$

Ω(x), the algebra of differential operators with rational coefficients, is a noncommutative PID:

$$\mathcal{M}_i = \Omega(x)\vec{\mathfrak{u}_i}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Sketch of proof

• using \mathcal{M}_i , define a matrix differential operator

$$\mathfrak{U} = [\mathfrak{u}_1^{-} \mathfrak{u}_2^{-} \ldots \mathfrak{u}_N^{-}]^T, \quad \mathfrak{u}_i^{-} = \sum_{j=0}^{\ell_i} \partial_x^j \vec{u}_{ji}(x)$$

$$U(x) = [\vec{u}_{\ell_1 1}(x) \ \vec{u}_{\ell_2 2}(x) \ \dots \ \vec{u}_{\ell_N N}(x)]^T$$

Then

$$\begin{split} R(x) &:= U(x)W(x)U(x)^* = \text{diag}(r_1(x), \dots, r_N(x)) \text{ is diagonal.} \\ \\ \mathfrak{U}W(x)\mathfrak{U}^*R(x)^{-1} = \text{diag}(\mathfrak{d}_1, \mathfrak{d}_2, \dots, \mathfrak{d}_N). \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Sketch of proof

- $p_i(x, n)$ the sequence of orthogonal polys for $r_i(x)$
- then sequence of matrix-valued functions

$$P(x,n) = \text{diag}(p_1(x,n), p_2(x,n), \dots, p_N(x,n)) \cdot \mathfrak{U}$$

satisfies

1

$$P(x,n) \cdot W(x)\mathfrak{U}^*R(x)^{-1}\mathfrak{U} = \operatorname{diag}(\lambda_1(n),\ldots,\lambda_N(n))P(x,n).$$
$$\int P(x,m)W(x)P(x,n)^*dx = 0, \quad m \neq n.$$

・ロト ・ 理 ト ・ ヨ ト ・

Consider the weight matrix

$$W(x)=e^{-x^2}\left(\begin{array}{cc}1+a^2x^2&ax\\ax&1\end{array}\right).$$

• $\mathcal{D}(W)$ contains

$$\begin{split} \mathfrak{D}_{1} &= \partial_{x}^{2} I + \partial_{x} \left(\begin{array}{cc} -2x & a \\ 0 & -2x \end{array} \right) + \left(\begin{array}{cc} -2 & 0 \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{2} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}/4 & a^{3}x/4 \\ 0 & 0 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} 0 & a/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \\ \mathfrak{D}_{3} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}x/2 & a^{3}x^{2}/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -(a^{2}+1) & a(a^{2}+2) \\ 0 & 1 \end{array} \right) + \left(\begin{array}{cc} 0 & a+2/a \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{4} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{3}x/4 & a^{2}(a^{2}x^{2}-1)/4 \\ -a^{2}/4 & a^{3}x/4 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -a^{3}/2 & a^{2}(a^{2}+2)x/2 \\ 0 & 0 \end{array} \right) + \left(\begin{array}{cc} 0 & a^{2}/2+1 \\ 1 & 0 \end{array} \right) \end{split}$$

ヘロト 人間 とくほとくほとう

₹ 990

• we have
$$\mathfrak{V}_1\mathfrak{V}_2 = 0$$
 for

$$\mathfrak{V}_1 = \mathfrak{D}_2, \ \mathfrak{V}_2 = a^2 \mathfrak{D}_1 + 4 \mathfrak{D}_2 - 4I$$

the modules are

$$\mathcal{M}_1 = \Omega(x) \begin{pmatrix} \partial_x a/2 \\ -\partial_x a^2 x/2 - 1 \end{pmatrix}, \quad \mathcal{M}_2 = \Omega(x) \begin{pmatrix} -1 \\ \partial_x a/2 \end{pmatrix}$$

therefore

$$\mathfrak{U} = \left(\begin{array}{cc} \partial_x a/2 & -\partial_x a^2 x/2 - 1\\ -1 & \partial_x a/2 \end{array}\right), \ U(x) = \left(\begin{array}{cc} a/2 & -a^2 x/2\\ 0 & a/2 \end{array}\right)$$

.

₹ 990

ヘロト 人間 とくほとくほとう

$$R(x) = U(x)W(x)U(x)^* = (a^2/4)e^{-x^2}I$$

- so W(x) is a noncommutative bispectral Darboux transformation of the Hermite weight
- orthogonal matrix polynomials for W(x) are given in terms of Hermite polynomials by

$$P(x,n) := p_{herm}(x,n)I \cdot \mathfrak{U},$$

ヘロン 人間 とくほ とくほ とう

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite *J*-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Grünbaum, Alberto and Tirao, Juan. The Algebra of Differential Operators Associated to a Weight Matrix. J. Integr. equ. oper. theory (2007) 58: 449.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ