The Matrix Bochner Problem and Representation Theory SE Lie Theory Workshop XI

W.R. Casper

Department of Mathematics Louisiana State University

May 13, 2019

W.R. Casper The Matrix Bochner Problem and Representation Theory

< □ > < 同 > < 三 > <

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials

2 The Matrix Bochner Problem

- The Problem
- Classification

Outline

Spherical Functions Orthogonal Matrix Polynomials

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification

Spherical Functions Orthogonal Matrix Polynomials

Spherical Zonal Functions

- G locally compact unimodular group
- K compact subgroup
- Haar measure dg normalized by $\int_{K} dk = 1$

Definition

A spherical zonal function on G is $\phi : G \to \mathbb{C}$ satisfying $\phi(e) = 1$ and

$$\phi(\mathbf{x})\phi(\mathbf{y}) = \int_{K} \phi(\mathbf{x}\mathbf{k}\mathbf{y})d\mathbf{k}.$$

Spherical Functions Orthogonal Matrix Polynomials

Spherical Functions

Natural generalization:

- V a finite dimensional vector space
- $[\pi] \in \widehat{K}$ with character χ_{π}

Definition

A spherical function of type $[\pi]$ on G is $\Phi : G \to End(V)$ satisfying $\Phi(e) = I$ and

$$\Phi(x)\Phi(y) = \int_{\mathcal{K}} \chi_{\pi}(k^{-1})\Phi(xky)dk.$$

Spherical Functions Orthogonal Matrix Polynomials

Spherical Function Properties

- Φ a spherical function of type $[\pi]$
- $D \in U(\mathfrak{g})^K$ a differential operator on G which is left G-invariant and right K-invariant

Properties:

(a)

$$\Phi(kgk') = \Phi(k)\Phi(g)\Phi(k')$$

(b) Φ|_K is a representation of K equivalent to n copies of [π]
(c) eigenfunction of a differential operator:

$$(D\cdot \Phi)(g)=\Phi(g) \wedge ext{ for } \wedge = (D\cdot \Phi)(0)$$

Irreducible Spherical Functions

- $\tilde{\pi}: G \to \operatorname{End}(\widetilde{V})$ a representation of G
- $\pi: \mathcal{K} \to \mathsf{End}(\mathcal{V})$ an irreducible subrepresentation of $\widetilde{\pi}|_{\mathcal{K}}$

Observation:

$$\Phi^{\widetilde{\pi}}_{\pi}(g) := \int_{\mathcal{K}} \chi_{\pi}(k^{-1}) \widetilde{\pi}(kg)|_V dk$$
 is spherical of type π

Definition

The **spherical function of type** π is called irreducible if it is of the above form with $\Phi_{\pi}^{\tilde{\pi}}$ for some irreducible π

Orthogonal Basis

- $\widetilde{\pi}_1, \widetilde{\pi}_2: G \to \text{End}(\widetilde{V})$ irreducible representations of G
- $\pi: K \to \text{End}(V)$ an irreducible subrepresentation of both $\widetilde{\pi}_1|_K$ and $\widetilde{\pi}_2|_K$

Orthogonal basis:

$$\int_G \Phi^{\widetilde{\pi}_1}_\pi(g)^* \Phi^{\widetilde{\pi}_2}_\pi(g) dg = 0$$
 / iff $[\pi_1]
eq [\pi_2].$

Proposition

The irreducible spherical functions span the vector space

 $C_{[\pi]}(G) = \{ \Phi : G \to \text{End}(V) | \Phi \text{ is spherical of type } [\pi] \}.$

Outline

Spherical Functions Orthogonal Matrix Polynomials

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials
- 2 The Matrix Bochner Problem
 - The Problem
 - Classification

Weight Matrix

Spherical Functions Orthogonal Matrix Polynomials

Definition

A weight matrix is a function $W(x) : \mathbb{R} \to M_N(\mathbb{C})$ which is smooth, positive definite, and Hermitian on an interval (x_0, x_1) and zero outside of (x_0, x_1) and which has finite moments.

A matrix-valued inner product on $N \times N$ matrix-valued polynomials:

$$\langle P(x), Q(x) \rangle_W = \int P(x) W(x) Q(x)^* dx.$$

More generally, we can replace W(x)dx with a wilder matrix-valued measure.

Spherical Functions Orthogonal Matrix Polynomials

Orthogonal Matrix Polynomials

Definition (Kreĭn 1949)

A sequence of orthogonal matrix polynomials for a weight W(x) is a sequence P(x, n) of $N \times N$ matrix-valued polynomials

• deg(P(x, n)) = n with nonsingular leading coefficient

•
$$\langle P(x,m), P(x,n) \rangle_W = 0$$
 for $m \neq n$

- polynomials are unique if normalized or monic
- the spherical functions can be encoded as orthogonal matrix polynomials

イロン イボン イヨン イヨン

۲

Spherical Functions to Matrix Polynomials

- Algebra of zonal spherical functions = $\mathbb{C}[\phi]$
- ϕ is the fundamental zonal spherical function

Can choose $[\widetilde{\pi}_1], \ldots, [\widetilde{\pi}_\ell] \in \widehat{G}$ such that

$\mathcal{C}_{[\pi]}(\mathcal{G}) = \mathbb{C}[\phi] \Phi_{\pi}^{\widetilde{\pi}_1} \oplus \cdots \oplus \mathbb{C}[\phi] \Phi_{\pi}^{\widetilde{\pi}_\ell}$

• For each $n \ge 0$ there exists exactly ℓ classes $[\tilde{\pi}_{n,1}], \ldots, [\tilde{\pi}_{n,\ell}]$ such that

$$\Phi_{\pi}^{\widetilde{\pi}_{n,j}} = \sum_{i=1}^{\ell} p_{n,j,i}(\phi) \Phi_{\pi}^{\widetilde{\pi}_i}, \quad \max_{ij} \deg p_{n,j,i}(\phi) = n.$$

ヘロト ヘアト ヘビト ヘビト

Spherical Functions to Matrix Polynomials

- Define P(φ, n) ∈ M_ℓ(ℂ[φ]) to be the ℓ × ℓ matrix with i, j'th entry p_{n,j,i}(φ)
- Cartan decomposition: G = KAK, $S := \phi(A) \subseteq \mathbb{R}$, $x = \phi^{-1} : S \to A$.

Orthogonality:

$$\int_{\mathcal{S}} P(x,m)^* W(x) P(x,n) dx = 0I$$

 W(x) and ℓ × ℓ matrix expressible in terms of Φ^{π̃1}_π,..., Φ^{π̃ℓ}_π and the derivative of φ|_A.

・ロト ・同ト ・ヨト ・ヨト

э.

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials

2 The Matrix Bochner Problem

- The Problem
- Classification

Differential Equation

- Since the spherical functions are eigenfunctions of a differential operator, the polynomials P(x, n) are too
- the action of U(g)^K on C_[π](G) restricts to the action of a matrix-valued ordinary differential operator on A
- change of variable gives a matrix-valued differential operator *L* on *S* ⊆ ℝ
- The polynomials *P*(*x*, *n*) are eigenfunctions of *D* with matrix-valued eigenvalues:

$$L \cdot P(x, n) = P(x, n) \Lambda(n), \ \Lambda(n) \in M_{\ell}(\mathbb{C}).$$

The Problem Classification

Matrix Bochner Problem

Problem

Classify all orthogonal matrix polynomials which are eigenfunctions of a second-order differential operator.

- Equiv. classify all weights W(x)
- More generally, calculate

$$\mathcal{D}(W) = \{ D : \exists \Lambda(n) \text{ s.t. } P_n(x) \cdot D = \Lambda(n)P_n(x) \forall n \}.$$

[Hermite:]

$$d\mu_{ ext{herm}}(x) = e^{-x^2} dx$$

 $p_{herm}(x, 0) = 1$ $p_{herm}(x, 1) = x$ $p_{herm}(x, 2) = x^2 - 1$ $p_{herm}(x, 3) = x^3 - 3x$ $p_{herm}(x, 4) = x^4 - 6x^2 + 3$

Three term recurrence relation

$$xp_{herm}(x, n) = (1/2)p_{herm}(x, n+1) + (1/2)p_{herm}(x, n-1)$$

[Laguerre:]

$$d\mu_{\text{lag}}(x) = x^b e^{-x} \mathbf{1}_{(0,\infty)}(x) dx$$

$$p_{lag}(x,0) = 1$$

$$p_{lag}(x,1) = -x + a + 1$$

$$p_{lag}(x,2) = \frac{1}{2}(x^2 - (2a+4)x + (a+1)(a+2))$$

$$p_{lag}(x,3) = \frac{1}{6}(-x^3 + (a+3)(3x^2 - 3(a+2)x + (a+1)(a+2)))$$

Three term recurrence relation

$$xp_{lag}(x,n) = -(n+1)p_{lag}(x,n+1) + (2n+1+a)p_{lag}(x,n) - (n+a)p_{lag}(x,n)$$

イロト イポト イヨト イヨト

э

[Jacobi:]

$$d\mu_{
m jac}(x) = (1-x)^a (1+x)^b 1_{(-1,1)}(x) dx$$

$$egin{aligned} & p_{ ext{jac}}(x,0) = 1 \ & p_{ ext{jac}}(x,1) = rac{a+b+2}{2}x - rac{b-a}{2} \end{aligned}$$

Three term recurrence relation

$$xp_{jac}(x,n) = \frac{2(n+1)(n+1+a+b)}{(2n+a+b+1)(2n+a+b+2)}p_{jac}(x,n+1) \\ - \frac{(a^2-b^2)}{(2n+a+b+2)(2n+a+b)}p_{jac}(x,n) \\ + \frac{2(n+a+1)(n+b+1)}{(2n+a+b+1)(2n+a+b)}p_{jac}(x,n-1)$$

Differential Equations

These examples are special!

• eigenfunctions of a differential operator [Hermite:]

$$[\partial_x^2 - 2x\partial_x] \cdot p_{herm}(x, n) = -2np_{herm}(x, n)$$

[Laguerre:]

$$[x\partial_x^2 + (b+1-x)\partial_x] \cdot p_{\mathsf{lag}}(x,n) = -np_{\mathsf{lag}}(x,n)$$

[Jacobi:]

$$[(1-x^2)\partial_x^2 + (b-a-(b+a+2)x)\partial_x] \cdot p_{jac}(x,n) = -n(n+b+a+1)p_{jac}(x,n)$$

< 回 > < 三 > < 三

Bochner pairs

 By a result of Grünbaum and Tirao, we can take D to be W-symmetric:

$$\langle P(x) \cdot \mathfrak{D}, Q(x) \rangle_W = \langle P(x), Q(x) \cdot \mathfrak{D} \rangle_W.$$

Definition

A **Bochner pair** is a pair $(W(x), \mathfrak{D})$ with W(x) a weight matrix and \mathfrak{D} a *W*-symmetric second order differential operator.

Problem (Matrix Bochner problem)

Classify all matrix Bochner pairs.

[Hermite-type:]

$$\mathfrak{D} = \partial_x^2 I + \partial_x \left(\begin{array}{cc} a - 2x & 4b(2 - a(a + 2x)) \\ 0 & -a - 2x \end{array} \right) + \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right)$$
$$W(x) = \left(\begin{array}{cc} 4b^2(a + 2x)^2 + 16e^{2ax} & 2b(a + 2x) \\ 2b(a + 2x) & 1 \end{array} \right) e^{-x^2 - ax}$$

The Problem

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔄

[Laguerre-type:]

$$\mathfrak{D} = \partial_x^2 x I + \partial_x \left(\begin{array}{cc} b + a + 2 - x & a + 2 - (a/b)x \\ 0 & b - x \end{array} \right) + \left(\begin{array}{c} -1/2 & 0 \\ 0 & 1/2 \end{array} \right)$$
$$W(x) = \left(\begin{array}{c} c x^{a+2} + (b-x)^2 & -b(b-x) \\ -b(b-x) & b^2 \end{array} \right) x^{b-1} e^{-x}.$$

The Problem

イロン イロン イヨン イヨン

э

.

[Jacobi-type:]

$$\alpha = d(-b^2c^2 + b^2 + 1 + bc(b^2c^2 + b^2 - 1))/2 - 1$$

$$\beta = d(-b^2c^2 + b^2 + 1 - bc(b^2c^2 + b^2 - 1))/2 - 1$$

$$\begin{split} \mathfrak{D} &= \partial_x^2 (1-x^2)I - \partial_x x(\alpha+\beta+4)I \\ &+ \partial_x \left(\begin{array}{cc} x(\beta-\alpha)d - 2bc & -2b \\ 2bc^2 - 2/b & x(\beta-\alpha)d + 2bc \end{array} \right) \\ &+ \frac{d}{2}(b^2c^2 + b^2 - 1) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \end{split}$$

$$W(x) = (1-x)^{\alpha} (1+x)^{\beta} \begin{pmatrix} b^2 + (x-bc)^2 & (\beta-\alpha)/b - \frac{\alpha+\beta+2}{bd}x \\ (\beta-\alpha)/b - \frac{\alpha+\beta+2}{bd}x & b^2c^4 - 2c^2 + 1/b^2 + (x+bc)^2 \end{pmatrix}$$

イロン イロン イヨン イヨン

æ

The Matrix Boc

Examples

[Jacobi-type:]

$$\alpha = \mathbf{a} - \mathbf{1} - \mathbf{a}^2 \mathbf{b}^2 \mathbf{c} / \mathbf{2}$$
$$\beta = \mathbf{c} - \mathbf{1} + \mathbf{a}^2 \mathbf{b}^2 \mathbf{c} / \mathbf{2}$$

The Problem

$$\mathfrak{D} = \partial_x^2 (1 - x^2) I - \partial_x x \begin{pmatrix} \alpha + \beta + 4 & -bc \\ 0 & \alpha + \beta + 3 \end{pmatrix}$$
$$+ \partial_x \begin{pmatrix} \beta - \alpha - ab^2c + 2 & ab^3c^2 - 3bc \\ -ab & \beta - \alpha + ab^2c - 1 \end{pmatrix} - \frac{a}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$W(x) = (1 - x)^{\alpha} (1 + x)^{\beta} \begin{pmatrix} (\beta - \alpha - a)b^2c - (\beta + \alpha + 2 + a)cb^2x + (x + 1)^2 & b(\beta - \alpha - (\alpha + \beta + 2)x) \\ -ab & \alpha - ab \end{pmatrix}$$

$$W(x) = (1-x)^{\alpha} (1+x)^{\beta} \begin{pmatrix} (\beta - \alpha - a)b^{\alpha}c - (\beta + \alpha + 2 + a)cb^{\alpha}x + (x+1)^{\alpha} & b(\beta - \alpha - (\alpha + \beta + 2)x) \\ b(\beta - \alpha - (\alpha + \beta + 2)x) & a^{2}b^{2} + 1 - x \end{pmatrix}.$$

イロン イロン イヨン イヨン

æ

Outline

Representation Theory and Orthogonal Matrix Polynomials

- Spherical Functions
- Orthogonal Matrix Polynomials

2 The Matrix Bochner Problem

- The Problem
- Classification

Big idea

Let (W, \mathfrak{D}) be a matrix Bochner pair

- Use the structure of D(W) over its center Z(W) to learn about D
- then use \mathfrak{D} to learn about W(x)

Important steps:

- Show that $\mathcal{Z}(W)$ and $\mathcal{D}(W)$ are affine (nontrivial!)
- Show that $\mathcal{D}(W)$ is finite over $\mathcal{Z}(W)$
- Study the generic structure of D(W) over Z(W) Rephrased: In a neighborhood of a generic point of Spec(Z(W)), what does the algebra D(W) look like?

Operator Adjoints

Theorem (Grünbaum-Tirao)

The algebra $\mathcal{D}(W)$ has a **adjoint involution**:

$$\dagger:\mathcal{D}(W)
ightarrow \mathcal{D}(W), \ \mathfrak{D} \mapsto \mathfrak{D}^{\dagger}$$

$$\langle P(x) \cdot \mathfrak{D}, Q(x) \rangle_W = \langle P(x), Q(x) \cdot \mathfrak{D}^{\dagger} \rangle_W.$$

• if W(x) is smooth

$$\mathfrak{D}^{\dagger} = W(x)\mathfrak{D}^{*}W(x)^{-1}$$
$$\left(\sum_{k}\partial_{x}^{k}A_{k}(x)\right)^{*} = \sum_{k}(-1)^{k}A_{k}(x)\partial_{x}^{k}$$

イロト イポト イヨト イヨト

э

New properties

- **1** $\mathcal{D}(W)$ is affine (finitely generated)
- **2** the center $\mathcal{Z}(W)$ of $\mathcal{D}(W)$ is affine
- the ring $\mathcal{D}(W)$ is module finite over $\mathcal{Z}(W)$
- $\mathcal{Z}(W)$ is reduced and Krull dimension 1
- **(** $\mathcal{D}(W)$ is a semiprime PI-algebra of GK-dim 1
- **(** $\mathcal{D}(W)$ is generically Azumaya over $\mathcal{Z}(W)$

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_i}(\mathcal{F}_i(W)).$$

the previous isomorphism is involutive

The Problem Classification

Local structure of $\mathcal{D}(W)$

Ring of fractions

 $\mathcal{F}(W) = \{B^{-1}A : A, B \in \mathcal{Z}(W), B \text{ not a zero divisor}\}.$

\$\mathcal{F}_i(\mathcal{W})\$, \$i = 1, \ldots, r\$ fraction field of \$i\$ th irred. component of \$\mathcal{Spec}(\mathcal{Z}(\mathcal{W}))\$

Theorem (-, Yakimov 2018)

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_i}(\mathcal{F}_i(W)).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Classification

• $n_1 + \cdots + n_r$ is the **rank** of $\mathcal{D}(W)$ (bounded by ℓ)

Theorem (-,Yakimov 2018)

Let W(x) be an $\ell \times \ell$ weight matrix solving Bochner, with $\mathcal{D}(W)$ having rank ℓ . Then

$$W(x) = U(x) diag(r_1(x), \ldots, r_\ell(x)) U(x)^*$$

for some rational matrix U(x) and some classical weights $r_1(x), \ldots, r_\ell(x)$ and

$$P_n(x) = diag(p_{1n}(x), \dots, p_{\ell,n}(x)) \cdot L$$

for some differential operator L.

イロト イポト イヨト イヨト

э

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite *J*-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Koelink, Erik and van Pruijssen, Maarten and Román, Pablo. Matrix-valued orthogonal polynomials related to $(SU(2) \times SU(2), diag)$, IMRN 2012