Orthogonal Matrix Polynomials and Representation Theory

W.R. Casper

Department of Mathematics
Louisiana State University

April 2, 2019

Outline

(1) Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Outline

(1) Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Orthogonal Polynomials on the Real Line

- $\mu(x)$ a positive measure on \mathbb{R} with finite moments
- inner product on polynomials

$$
\langle p(x), q(x)\rangle_{\mu}:=\int p(x) \overline{q(x)} d \mu(x)
$$

Definition

A sequence of polynomials $\{p(x, n): n=0,1,2$,$\} satisfying$

- $\operatorname{deg}(p(x, n))=n$
- $\langle p(x, m), p(x, n)\rangle_{\mu}=0$ for $m \neq n$
is a sequence of orthogonal polynomials for $\mu(x)$.
- unique if taken to be monic or normalized

Examples

[Hermite:]

$$
\begin{aligned}
& \quad d \mu_{\text {herm }}(x)=e^{-x^{2}} d x \\
& p_{\text {herm }}(x, 0)=1 \\
& p_{\text {herm }}(x, 1)=x \\
& p_{\text {herm }}(x, 2)=x^{2}-1 \\
& p_{\text {herm }}(x, 3)=x^{3}-3 x \\
& p_{\text {herm }}(x, 4)=x^{4}-6 x^{2}+3
\end{aligned}
$$

Three term recurrence relation

$$
x p_{\text {herm }}(x, n)=(1 / 2) p_{\text {herm }}(x, n+1)+(1 / 2) p_{\text {herm }}(x, n-1)
$$

Examples

[Laguerre:]

$$
d \mu_{\operatorname{lag}}(x)=x^{b} e^{-x} 1_{(0, \infty)}(x) d x
$$

$p_{\text {lag }}(x, 0)=1$
$p_{\text {lag }}(x, 1)=-x+a+1$
$p_{\text {lag }}(x, 2)=\frac{1}{2}\left(x^{2}-(2 a+4) x+(a+1)(a+2)\right)$
$p_{\text {lag }}(x, 3)=\frac{1}{6}\left(-x^{3}+(a+3)\left(3 x^{2}-3(a+2) x+(a+1)(a+2)\right)\right)$
Three term recurrence relation
$x p_{\text {lag }}(x, n)=-(n+1) p_{\text {lag }}(x, n+1)+(2 n+1+a) p_{\text {lag }}(x, n)-(n+a) p_{\text {lag }}(x, r$

Examples

[Jacobi:]

$$
\begin{aligned}
& d \mu_{\mathrm{jac}}(x)=(1-x)^{a}(1+x)^{b} 1_{(-1,1)}(x) d x \\
& p_{\mathrm{jac}}(x, 0)=1 \\
& \quad p_{\mathrm{jac}}(x, 1)=\frac{a+b+2}{2} x-\frac{b-a}{2}
\end{aligned}
$$

Three term recurrence relation

$$
\begin{aligned}
x p_{\mathrm{jac}}(x, n) & =\frac{2(n+1)(n+1+a+b)}{(2 n+a+b+1)(2 n+a+b+2)} p_{\mathrm{jac}}(x, n+1) \\
& -\frac{\left(a^{2}-b^{2}\right)}{(2 n+a+b+2)(2 n+a+b)} p_{\mathrm{jac}}(x, n) \\
& +\frac{2(n+a+1)(n+b+1)}{(2 n+a+b+1)(2 n+a+b)} p_{\mathrm{jac}}(x, n-1)
\end{aligned}
$$

Differential Equations

These examples are special!

- eigenfunctions of a differential operator
[Hermite:]

$$
\left[\partial_{x}^{2}-2 x \partial_{x}\right] \cdot p_{\text {herm }}(x, n)=-2 n p_{\text {herm }}(x, n)
$$

[Laguerre:]

$$
\left[x \partial_{x}^{2}+(b+1-x) \partial_{x}\right] \cdot p_{\operatorname{lag}}(x, n)=-n p_{\operatorname{lag}}(x, n)
$$

[Jacobi:]
$\left[\left(1-x^{2}\right) \partial_{x}^{2}+(b-a-(b+a+2) x) \partial_{x}\right] \cdot p_{\mathrm{jac}}(x, n)=-n(n+b+a+1) p_{\mathrm{jac}}(x, n)$

Applications

- solutions of PDEs
- separation of variables
- spectral and pseudo-spectral methods
- polynomial approximation
- error minimizing approximations
- root finding
- Hermitian, symmetric, and symplectic random matrices
- asymptotic behavior of eigenvalues
- representation theory
- spherical harmonics
- spherical zonal functions
- quantum mechanics
- energy levels of the hydrogen atom

Bochner's Theorem

Theorem (Bochner 1929)

Up to affine transformation, the only orthogonal polynomials which are eigenfunctions of a second order differential operator are the classical orthogonal polynomials: the Hermite, Laguerre, and Jacobi polynomials.

Various generalizations of classical orthogonal polynomials:

- exceptional orthogonal polynomials
- multi-variate versions
- orthogonal polynomials satisfying difference equations
- matrix orthogonal polynomials

Outline

(1) Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Weight Matrix

Definition

A weight matrix is a function $W(x): \mathbb{R} \rightarrow M_{N}(\mathbb{C})$ which is smooth, positive definite, and Hermitian on an interval (x_{0}, x_{1}) and zero outside of $\left(x_{0}, x_{1}\right)$ and which has finite moments.

A matrix-valued inner product on $N \times N$ matrix-valued polynomials:

$$
\langle P(x), Q(x)\rangle w=\int P(x) W(x) Q(x)^{*} d x
$$

More generally, we can replace $W(x) d x$ with a wilder matrix-valued measure.

Orthogonal Matrix Polynomials

Definition (Kreĭn 1949)

A sequence of orthogonal matrix polynomials for a weight $W(x)$ is a sequence $P(x, n)$ of $N \times N$ matrix-valued polynomials

- $\operatorname{deg}(P(x, n))=n$ with nonsingular leading coefficient
- $\langle P(x, m), P(x, n)\rangle w=0$ for $m \neq n$
- Polynomials are unique if normalized or monic
- Some sequences are also eigenfunctions of second-order differential operators

The Matrix Bochner problem

Problem (Matrix Bochner problem)

Find all weight matrices $W(x)$ whose sequences of orthogonal matrix polynomials $P(x, n)$ satisfy a second-order differential equation

$$
\frac{d^{2}}{d x^{2}} P(x, n) A_{2}(x)+\frac{d}{d x} P(x, n) A_{1}(x)+P(x, n) A_{0}(x)=\Lambda(n) P(x, n)
$$

for some matrix-valued functions $A_{i}(x)$ and matrices $\Lambda(n)$.
In terms of right-acting operators:

$$
P(x, n) \cdot \mathfrak{D}=\Lambda(n) P(x, n), \quad \mathfrak{D}=\partial_{x}^{2} A_{2}(x)+\partial_{x} A_{1}(x)+A_{0}(x)
$$

Bochner pairs

- By a result of Grünbaum and Tirao, we can take \mathfrak{D} to be W-symmetric:

$$
\langle P(x) \cdot \mathfrak{D}, Q(x)\rangle_{w}=\langle P(x), Q(x) \cdot \mathfrak{D}\rangle_{w}
$$

Definition

A Bochner pair is a pair $(W(x), \mathfrak{D})$ with $W(x)$ a weight matrix and \mathfrak{D} a W-symmetric second order differential operator.

Problem (Matrix Bochner problem)

Classify all matrix Bochner pairs.

Examples

[Hermite-type:]

$$
\begin{aligned}
& \mathfrak{D}=\partial_{x}^{2} I+\partial_{x}\left(\begin{array}{cc}
a-2 x & 4 b(2-a(a+2 x)) \\
0 & -a-2 x
\end{array}\right)+\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& W(x)=\left(\begin{array}{cc}
4 b^{2}(a+2 x)^{2}+16 e^{2 a x} & 2 b(a+2 x) \\
2 b(a+2 x) & 1
\end{array}\right) e^{-x^{2}-a x}
\end{aligned}
$$

Examples

[Laguerre-type:]

$$
\begin{gathered}
\mathfrak{D}=\partial_{x}^{2} x I+\partial_{x}\left(\begin{array}{cc}
b+a+2-x & a+2-(a / b) x \\
0 & b-x
\end{array}\right)+\left(\begin{array}{cc}
-1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right) \\
W(x)=\left(\begin{array}{cc}
c x^{a+2}+(b-x)^{2} & -b(b-x) \\
-b(b-x) & b^{2}
\end{array}\right) x^{b-1} e^{-x} .
\end{gathered}
$$

Examples

[Jacobi-type:]

$$
\begin{aligned}
& \alpha=d\left(-b^{2} c^{2}+b^{2}+1+b c\left(b^{2} c^{2}+b^{2}-1\right)\right) / 2-1 \\
& \beta=d\left(-b^{2} c^{2}+b^{2}+1-b c\left(b^{2} c^{2}+b^{2}-1\right)\right) / 2-1 \\
& \mathfrak{D}=\partial_{x}^{2}\left(1-x^{2}\right) I-\partial_{x} x(\alpha+\beta+4) I \\
& +\partial_{x}\left(\begin{array}{cc}
x(\beta-\alpha) d-2 b c & -2 b \\
2 b c^{2}-2 / b & x(\beta-\alpha) d+2 b c)
\end{array}\right) \\
& +\frac{d}{2}\left(b^{2} c^{2}+b^{2}-1\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& W(x)=(1-x)^{\alpha}(1+x)^{\beta}\left(\begin{array}{cc}
b^{2}+(x-b c)^{2} & (\beta-\alpha) / b-\frac{\alpha+\beta+2}{b d} x \\
(\beta-\alpha) / b-\frac{\alpha+\beta+2}{b d} x & b^{2} c^{4}-2 c^{2}+1 / b^{2}+(x+b c)^{2}
\end{array}\right)
\end{aligned}
$$

Examples

[Jacobi-type:]

$$
\left.\begin{array}{c}
\alpha=a-1-a^{2} b^{2} c / 2 \\
\beta=c-1+a^{2} b^{2} c / 2 \\
\mathfrak{D}=\partial_{x}^{2}\left(1-x^{2}\right) I-\partial_{x} x\left(\begin{array}{cc}
\alpha+\beta+4 & -b c \\
0 & \alpha+\beta+3
\end{array}\right) \\
+\partial_{X}\left(\begin{array}{cc}
\beta-\alpha-a b^{2} c+2 & a b^{3} c^{2}-3 b c \\
-a b & \beta-\alpha+a b^{2} c-1
\end{array}\right)-\frac{a}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
w(x)=(1-x)^{\alpha}(1+x)^{\beta}\left(\begin{array}{cc}
(\beta-\alpha-a) b^{2} c-(\beta+\alpha+2+a) c b^{2} x+(x+1)^{2} & b(\beta-\alpha-(\alpha+\beta+2) x) \\
b(\beta-\alpha-(\alpha+\beta+2) x)
\end{array}\right. \\
a^{2} b^{2}+1-x
\end{array}\right) . ~ l
$$

Applications

- solutions of PDEs
- noncommutative separation of variables?
- polynomial approximation
- nonlinear eigenvalue problem
- matrix-valued special functions
- block-tridiagonal random matrices
- asymptotic behavior of eigenvalues
- representation theory
- representations of rank 1 Gelfand pairs
- spherical functions
- quantum mechanics
- Dirac equation for a central Coulomb potential

New phenomena

- cone of weights

$$
\operatorname{Cone}(\mathfrak{D})=\{W(x):(W(x), \mathfrak{D}) \text { is a Bochner pair }\}
$$

- algebra of operators

$$
\mathcal{D}(W)=\{\mathfrak{D}: \exists \Lambda(n) \text { with } P(x, n) \cdot \mathfrak{D}=\Lambda(n) P(x, n)\}
$$

- in scalar case $\mathcal{D}(r)=\mathbb{C}[\mathfrak{d}]$
- in the matrix case, $\mathcal{D}(W)$ can have interesting noncommutative structure!!

Example

- Consider the weight matrix

$$
W(x)=e^{-x^{2}}\left(\begin{array}{cc}
1+a^{2} x^{2} & a x \\
a x & 1
\end{array}\right)
$$

- $\mathcal{D}(W)$ contains

$$
\begin{aligned}
& \mathfrak{D}_{1}=\partial_{x}^{2} I+\partial_{x}\left(\begin{array}{cc}
-2 x & a \\
0 & -2 x
\end{array}\right)+\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{2}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} / 4 & a^{3} x / 4 \\
0 & 0
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
0 & a / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \mathfrak{D}_{3}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} x / 2 & a^{3} x^{2} / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-\left(a^{2}+1\right) & a\left(a^{2}+2\right) \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & a+2 / a \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{4}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{3} x / 4 & a^{2}\left(a^{2} x^{2}-1\right) / 4 \\
-a^{2} / 4 & a^{3} x / 4
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-a^{3} / 2 & a^{2}\left(a^{2}+2\right) x / 2 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & a^{2} / 2+1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Outline

(1) Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Algebras determine operators!

Consider an algebra of differential operators \mathcal{A} with
(1) \mathcal{A} commutative
(2) \mathcal{A} contains a Schrödinger operator

$$
\partial_{x}^{2}+u(x)
$$

Theorem

If \mathcal{A} contains an operator of order 3 then u satisfies the stationary KdV equation

$$
\frac{1}{2} u^{\prime \prime \prime}(x)=6 u u^{\prime}(x) .
$$

Krichever correspondence

Consider an algebra of differential operators \mathcal{A} with
(1) \mathcal{A} commutative
(2) \mathcal{A} contains operators of order m and n with $\operatorname{gcd}(m, n)=1$

(dual of) kernel of $\mathfrak{d} \longleftrightarrow$ stalk of \mathcal{L} over p
$\underset{\text { isospectral }}{\text { deformations }} \longleftrightarrow \longleftrightarrow$ jacobian of \mathcal{C}

Matrix differential operators

Consider an algebra of matrix differential operators \mathcal{A} with

- requiring \mathcal{A} to be commutative is too restrictive
- generalization: \mathcal{A} is module finite over its center
- in the scalar case
\mathcal{A} is module finite over its center $\Leftrightarrow \mathcal{A}$ is commutative
- matrix case: \mathcal{A} can be noncommutative + finite over center

Big idea

Let (W, \mathfrak{D}) be a matrix Bochner pair

- Use the structure of $\mathcal{D}(W)$ over its center $\mathcal{Z}(W)$ to learn about \mathfrak{D}
- then use \mathfrak{D} to learn about $W(x)$

Important steps:
(1) Show that $\mathcal{Z}(W)$ and $\mathcal{D}(W)$ are affine (nontrivial!)
(2) Show that $\mathcal{D}(W)$ is finite over $\mathcal{Z}(W)$
(3) Study the generic structure of $\mathcal{D}(W)$ over $\mathcal{Z}(W)$ Rephrased: In a neighborhood of a generic point of $\operatorname{Spec}(\mathcal{Z}(W))$, what does the algebra $\mathcal{D}(W)$ look like?

Outline

(1) Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Operator Adjoints

Theorem (Grünbaum-Tirao)

The algebra $\mathcal{D}(W)$ has a adjoint involution:

$$
\begin{gathered}
\dagger: \mathcal{D}(W) \rightarrow \mathcal{D}(W), \mathfrak{D} \mapsto \mathfrak{D}^{\dagger} \\
\langle P(x) \cdot \mathfrak{D}, Q(x)\rangle w=\left\langle P(x), Q(x) \cdot \mathfrak{D}^{\dagger}\right\rangle w .
\end{gathered}
$$

- if $W(x)$ is smooth

$$
\begin{gathered}
\mathfrak{D}^{\dagger}=W(x) \mathfrak{D}^{*} W(x)^{-1} \\
\left(\sum_{k} \partial_{x}^{k} A_{k}(x)\right)^{*}=\sum_{k}(-1)^{k} A_{k}(x) \partial_{x}^{k} .
\end{gathered}
$$

New properties

(1) $\mathcal{D}(W)$ is affine (finitely generated)
(3) the center $\mathcal{Z}(W)$ of $\mathcal{D}(W)$ is affine
(3) the ring $\mathcal{D}(W)$ is module finite over $\mathcal{Z}(W)$
(9) $\mathcal{Z}(W)$ is reduced and Krull dimension 1
(0) $\mathcal{D}(W)$ is a semiprime Pl -algebra of GK-dim 1
(0) $\mathcal{D}(W)$ is generically Azumaya over $\mathcal{Z}(W)$

$$
\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_{i}}\left(\mathcal{F}_{i}(W)\right) .
$$

(3) the previous isomorphism is involutive

Affineness

- It's not at all obvious that $\mathcal{D}(W)$ or $\mathcal{Z}(W)$ must be affine!
- $\mathcal{A}=\left(\begin{array}{cc}\mathbb{C} & \mathbb{C}\left[\partial_{x}\right] \\ 0 & \mathbb{C}\end{array}\right)$ is commutative and not affine

Theorem (_-Yakimov)

The algebra $\mathcal{D}(W)$ and its center $\mathcal{Z}(W)$ are both affine.

- idea: use Grünbaum's adjoint + lots of algebra

Sketch of proof

We use the eigenvalue homomorphism

$$
\begin{gathered}
\mathcal{D}(W) \hookrightarrow M_{N}(\mathbb{C}[n]), \quad \mathfrak{D} \mapsto \Lambda(\mathfrak{D})(n) \\
\Lambda(\mathfrak{D})(n) P(x, n)=P(x, n) \cdot \mathfrak{D} .
\end{gathered}
$$

- Existence of adjoints implies the image of $\mathcal{D}(W)$ has a diagonalizable basis
- \wedge embeds $\mathcal{Z}(W)$ into a simultaneously diagonalizable subalgebra of $M_{N}(\mathbb{C}[n])$
- Such a subalgebra is finitely generated!

Sketch of proof

- Finiteness of $\mathcal{D}(W)$ is even harder!
- We consider an large subalgebra of $M_{N}(\mathbb{C}[n])$ containing the image of $\mathcal{D}(W)$
- We use Artin-Wedderburn and Tsen to prove it's an order (hence affine)
- The order is not commutative, but is a centralizing extension
- We apply Montgomery and Small's extension of Artin-Tate

Generic structure

Theorem (Posner)

A prime PI algebra is generically a central simple algebra over its center.

- our algebra $\mathcal{D}(W)$ is a Pl algebra (embeds into a matrix ring)
- unfortunately it is not prime
- it is semiprime and Krull dimension 1

Theorem (_-Yakimov)

$$
\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_{i}}\left(\mathcal{F}_{i}(W)\right)
$$

Outline

(1) Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials
(2) The Algebra $\mathcal{D}(W)$
- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Full weights

Definition

The module rank of $\mathcal{D}(W)$ is $n_{1}+n_{2}+\cdots+n_{r}$ from the previous theorem. If the rank is N, we say that $W(x)$ is full.

Theorem (_-Yakimov)

If $W(x)$ is full, then $W(x)$ is a noncommutative bispectral Darboux transformation of a direct sum of classical weights.

$$
\begin{gathered}
W(x)=T(x) \operatorname{diag}\left(r_{1}(x), r_{2}(x), \ldots, r_{n}(x)\right) T(x)^{*} \\
C(n) P(x, n)=\operatorname{diag}\left(p_{1}(x, n), p_{2}(x, n), \ldots, p_{N}(x, n)\right) \cdot \mathfrak{U} .
\end{gathered}
$$

Sketch of proof

- fullness means we can choose nonzero

$$
\mathfrak{V}_{1}, \ldots, \mathfrak{V}_{N} \in \mathcal{D}(W) \text { with }
$$

$$
\mathfrak{V}_{i} \mathfrak{V}_{j}=0, \quad i \neq j .
$$

- can take the \mathfrak{V}_{i} to be W-symmetric
- define modules

$$
\mathcal{M}_{i}=\left\{\overrightarrow{\mathfrak{w}} \in \Omega(x)^{\oplus N}: \overrightarrow{\mathfrak{w}}^{T} \mathfrak{V}_{j}=\overrightarrow{0}^{T} \forall j \neq i\right\}
$$

- $\Omega(x)$, the algebra of differential operators with rational coefficients, is a noncommutative PID:

$$
\mathcal{M}_{i}=\Omega(x) \overrightarrow{\mathfrak{u}}_{i}
$$

Sketch of proof

- using \mathcal{M}_{i}, define a matrix differential operator

$$
\begin{aligned}
& \mathfrak{U}=\left[\begin{array}{lll}
\overrightarrow{\mathfrak{u}_{1}} & \overrightarrow{\mathfrak{u}_{2}} & \ldots \\
\vec{u}_{N}
\end{array}\right]^{T}, \quad \overrightarrow{\mathfrak{u}_{i}}=\sum_{j=0}^{\ell_{i}} \partial_{x}^{j} \vec{u}_{j i}(x) \\
& U(x)=\left[\begin{array}{llll}
\vec{u}_{\ell_{1} 1} & (x) & \vec{u}_{\ell_{2} 2}(x) & \ldots \\
\vec{u}_{\ell_{N} N} & (x)
\end{array}\right]^{T}
\end{aligned}
$$

- Then
$R(x):=U(x) W(x) U(x)^{*}=\operatorname{diag}\left(r_{1}(x), \ldots, r_{N}(x)\right)$ is diagonal.

$$
\mathfrak{U} W(x) \mathfrak{U}^{*} R(x)^{-1}=\operatorname{diag}\left(\mathfrak{d}_{1}, \mathfrak{d}_{2}, \ldots, \mathfrak{d}_{N}\right)
$$

Sketch of proof

- $p_{i}(x, n)$ the sequence of orthogonal polys for $r_{i}(x)$
- then sequence of matrix-valued functions

$$
P(x, n)=\operatorname{diag}\left(p_{1}(x, n), p_{2}(x, n), \ldots, p_{N}(x, n)\right) \cdot \mathfrak{U}
$$

- satisfies

$$
\begin{gathered}
P(x, n) \cdot W(x) \mathfrak{U}^{*} R(x)^{-1} \mathfrak{U}=\operatorname{diag}\left(\lambda_{1}(n), \ldots, \lambda_{N}(n)\right) P(x, n) . \\
\int P(x, m) W(x) P(x, n)^{*} d x=0, \quad m \neq n .
\end{gathered}
$$

Example

- Consider the weight matrix

$$
W(x)=e^{-x^{2}}\left(\begin{array}{cc}
1+a^{2} x^{2} & a x \\
a x & 1
\end{array}\right)
$$

- $\mathcal{D}(W)$ contains

$$
\begin{aligned}
& \mathfrak{D}_{1}=\partial_{x}^{2} I+\partial_{x}\left(\begin{array}{cc}
-2 x & a \\
0 & -2 x
\end{array}\right)+\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{2}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} / 4 & a^{3} x / 4 \\
0 & 0
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
0 & a / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \mathfrak{D}_{3}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{2} x / 2 & a^{3} x^{2} / 2 \\
-a / 2 & a^{2} x / 2
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-\left(a^{2}+1\right) & a\left(a^{2}+2\right) \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & a+2 / a \\
0 & 0
\end{array}\right) \\
& \mathfrak{D}_{4}=\partial_{x}^{2}\left(\begin{array}{cc}
-a^{3} x / 4 & a^{2}\left(a^{2} x^{2}-1\right) / 4 \\
-a^{2} / 4 & a^{3} x / 4
\end{array}\right)+\partial_{x}\left(\begin{array}{cc}
-a^{3} / 2 & a^{2}\left(a^{2}+2\right) x / 2 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & a^{2} / 2+1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Example

- we have $\mathfrak{V}_{1} \mathfrak{V}_{2}=0$ for

$$
\mathfrak{V}_{1}=\mathfrak{D}_{2}, \quad \mathfrak{V}_{2}=a^{2} \mathfrak{D}_{1}+4 \mathfrak{D}_{2}-4 I
$$

- the modules are

$$
\mathcal{M}_{1}=\Omega(x)\binom{\partial_{x} a / 2}{-\partial_{x} a^{2} x / 2-1}, \quad \mathcal{M}_{2}=\Omega(x)\binom{-1}{\partial_{x} a / 2}
$$

- therefore

$$
\mathfrak{U}=\left(\begin{array}{cc}
\partial_{x} a / 2 & -\partial_{x} a^{2} x / 2-1 \\
-1 & \partial_{x} a / 2
\end{array}\right), \quad U(x)=\left(\begin{array}{cc}
a / 2 & -a^{2} x / 2 \\
0 & a / 2
\end{array}\right)
$$

Example

- the weight satisfies

$$
R(x)=U(x) W(x) U(x)^{*}=\left(a^{2} / 4\right) e^{-x^{2}} I
$$

- so $W(x)$ is a noncommutative bispectral Darboux transformation of the Hermite weight
- orthogonal matrix polynomials for $W(x)$ are given in terms of Hermite polynomials by

$$
P(x, n):=p_{\text {herm }}(x, n) I \cdot \mathfrak{U},
$$

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite J-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Grünbaum, Alberto and Tirao, Juan. The Algebra of Differential Operators Associated to a Weight Matrix. J. Integr. equ. oper. theory (2007) 58: 449.

