Orthogonal Matrix Polynomials and Representation Theory

W.R. Casper

Department of Mathematics Louisiana State University

April 2, 2019

W.R. Casper Orthogonal Matrix Polynomials and Representation Theory

Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

▲ @ ▶ ▲ 三 ▶

Orthogonal Polynomials Orthogonal Matrix Polynomials

Outline

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Properties of D(W)
- Consequences

Orthogonal Polynomials on the Real Line

- $\mu(x)$ a positive measure on \mathbb{R} with finite moments
- inner product on polynomials

$$\langle p(x), q(x) \rangle_{\mu} := \int p(x) \overline{q(x)} d\mu(x)$$

Definition

A sequence of polynomials $\{p(x, n) : n = 0, 1, 2, \}$ satisfying

• $\deg(p(x,n)) = n$

•
$$\langle p(x,m), p(x,n) \rangle_{\mu} = 0$$
 for $m \neq n$

is a sequence of orthogonal polynomials for $\mu(x)$.

• unique if taken to be monic or normalized

Orthogonal Polynomials Orthogonal Matrix Polynomials

Examples

[Hermite:]

$$d\mu_{
m herm}(x) = e^{-x^2} dx$$

 $p_{herm}(x, 0) = 1$ $p_{herm}(x, 1) = x$ $p_{herm}(x, 2) = x^2 - 1$ $p_{herm}(x, 3) = x^3 - 3x$ $p_{herm}(x, 4) = x^4 - 6x^2 + 3$

Three term recurrence relation

$$xp_{herm}(x,n) = (1/2)p_{herm}(x,n+1) + (1/2)p_{herm}(x,n-1)$$

 $\begin{array}{l} \mbox{Orthogonal Matrix Polynomials} \\ \mbox{The Algebra } \mathcal{D}(W) \end{array}$

Orthogonal Polynomials Orthogonal Matrix Polynomials

Examples

[Laguerre:]

$$d\mu_{ ext{lag}}(x) = x^b e^{-x} \mathbf{1}_{(0,\infty)}(x) dx$$

$$p_{lag}(x,0) = 1$$

$$p_{lag}(x,1) = -x + a + 1$$

$$p_{lag}(x,2) = \frac{1}{2}(x^2 - (2a+4)x + (a+1)(a+2))$$

$$p_{lag}(x,3) = \frac{1}{6}(-x^3 + (a+3)(3x^2 - 3(a+2)x + (a+1)(a+2)))$$

Three term recurrence relation

 $xp_{lag}(x,n) = -(n+1)p_{lag}(x,n+1) + (2n+1+a)p_{lag}(x,n) - (n+a)p_{lag}(x,n)$

(ロ) (同) (目) (日) (日) (の)

Orthogonal Polynomials Orthogonal Matrix Polynomials

Examples

[Jacobi:]

$$d\mu_{
m jac}(x) = (1-x)^a (1+x)^b 1_{(-1,1)}(x) dx$$

$$p_{jac}(x,0) = 1$$

 $p_{jac}(x,1) = rac{a+b+2}{2}x - rac{b-a}{2}$

Three term recurrence relation

$$xp_{jac}(x,n) = \frac{2(n+1)(n+1+a+b)}{(2n+a+b+1)(2n+a+b+2)}p_{jac}(x,n+1)$$
$$-\frac{(a^2-b^2)}{(2n+a+b+2)(2n+a+b)}p_{jac}(x,n)$$
$$+\frac{2(n+a+1)(n+b+1)}{(2n+a+b+1)(2n+a+b)}p_{jac}(x,n-1)$$

Differential Equations

These examples are special!

• eigenfunctions of a differential operator [Hermite:]

$$[\partial_x^2 - 2x\partial_x] \cdot p_{\mathsf{herm}}(x, n) = -2np_{\mathsf{herm}}(x, n)$$

[Laguerre:]

$$[x\partial_x^2 + (b+1-x)\partial_x] \cdot p_{\mathsf{lag}}(x,n) = -np_{\mathsf{lag}}(x,n)$$

[Jacobi:]

$$[(1-x^2)\partial_x^2 + (b-a-(b+a+2)x)\partial_x] \cdot p_{jac}(x,n) = -n(n+b+a+1)p_{jac}(x,n)$$

・ 同 ト ・ 三 ト ・

3

 $\begin{array}{l} \mbox{Orthogonal Matrix Polynomials} \\ \mbox{The Algebra } \mathcal{D}(W) \end{array}$

Orthogonal Polynomials Orthogonal Matrix Polynomials

Applications

- solutions of PDEs
 - separation of variables
 - spectral and pseudo-spectral methods
- polynomial approximation
 - error minimizing approximations
 - root finding
- Hermitian, symmetric, and symplectic random matrices
 - asymptotic behavior of eigenvalues
- representation theory
 - spherical harmonics
 - spherical zonal functions
- quantum mechanics
 - energy levels of the hydrogen atom

くロト くぼト くほと くほと

Orthogonal Polynomials Orthogonal Matrix Polynomials

Bochner's Theorem

Theorem (Bochner 1929)

Up to affine transformation, the only orthogonal polynomials which are eigenfunctions of a second order differential operator are the classical orthogonal polynomials: the Hermite, Laguerre, and Jacobi polynomials.

Various generalizations of classical orthogonal polynomials:

- exceptional orthogonal polynomials
- multi-variate versions
- orthogonal polynomials satisfying difference equations
- matrix orthogonal polynomials

Orthogonal Polynomials Orthogonal Matrix Polynomials

Outline

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials

2) The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Orthogonal Polynomials Orthogonal Matrix Polynomials

Weight Matrix

Definition

A weight matrix is a function $W(x) : \mathbb{R} \to M_N(\mathbb{C})$ which is smooth, positive definite, and Hermitian on an interval (x_0, x_1) and zero outside of (x_0, x_1) and which has finite moments.

A matrix-valued inner product on $N \times N$ matrix-valued polynomials:

$$\langle P(x), Q(x) \rangle_W = \int P(x) W(x) Q(x)^* dx.$$

More generally, we can replace W(x)dx with a wilder matrix-valued measure.

Orthogonal Polynomials Orthogonal Matrix Polynomials

Orthogonal Matrix Polynomials

Definition (Kreĭn 1949)

A sequence of orthogonal matrix polynomials for a weight W(x) is a sequence P(x, n) of $N \times N$ matrix-valued polynomials

- deg(P(x, n)) = n with nonsingular leading coefficient
- $\langle P(x,m), P(x,n) \rangle_W = 0$ for $m \neq n$
- Polynomials are unique if normalized or monic
- Some sequences are also eigenfunctions of second-order differential operators

<ロト <回 > < 注 > < 注 > 、

The Matrix Bochner problem

Problem (Matrix Bochner problem)

Find all weight matrices W(x) whose sequences of orthogonal matrix polynomials P(x, n) satisfy a second-order differential equation

$$\frac{d^2}{dx^2}P(x,n)A_2(x) + \frac{d}{dx}P(x,n)A_1(x) + P(x,n)A_0(x) = \Lambda(n)P(x,n)$$

for some matrix-valued functions $A_i(x)$ and matrices $\Lambda(n)$.

In terms of right-acting operators:

$$P(x,n)\cdot \mathfrak{D} = \Lambda(n)P(x,n), \ \mathfrak{D} = \partial_x^2 A_2(x) + \partial_x A_1(x) + A_0(x).$$

Orthogonal Polynomials Orthogonal Matrix Polynomials

Bochner pairs

 By a result of Grünbaum and Tirao, we can take D to be W-symmetric:

$$\langle \mathcal{P}(x) \cdot \mathfrak{D}, \mathcal{Q}(x) \rangle_{W} = \langle \mathcal{P}(x), \mathcal{Q}(x) \cdot \mathfrak{D} \rangle_{W}$$

Definition

A **Bochner pair** is a pair $(W(x), \mathfrak{D})$ with W(x) a weight matrix and \mathfrak{D} a *W*-symmetric second order differential operator.

Problem (Matrix Bochner problem)

Classify all matrix Bochner pairs.

Orthogonal Polynomials Orthogonal Matrix Polynomials

Examples

[Hermite-type:]

$$\mathfrak{D} = \partial_x^2 I + \partial_x \left(\begin{array}{cc} a - 2x & 4b(2 - a(a + 2x)) \\ 0 & -a - 2x \end{array} \right) + \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right)$$
$$W(x) = \left(\begin{array}{cc} 4b^2(a + 2x)^2 + 16e^{2ax} & 2b(a + 2x) \\ 2b(a + 2x) & 1 \end{array} \right) e^{-x^2 - ax}$$

W.R. Casper Orthogonal Matrix Polynomials and Representation Theory

イロン イロン イヨン イヨン

ъ

Orthogonal Polynomials Orthogonal Matrix Polynomials

Examples

[Laguerre-type:]

$$\mathfrak{D} = \partial_x^2 x I + \partial_x \left(\begin{array}{cc} b + a + 2 - x & a + 2 - (a/b)x \\ 0 & b - x \end{array} \right) + \left(\begin{array}{c} -1/2 & 0 \\ 0 & 1/2 \end{array} \right)$$
$$W(x) = \left(\begin{array}{c} c x^{a+2} + (b-x)^2 & -b(b-x) \\ -b(b-x) & b^2 \end{array} \right) x^{b-1} e^{-x}.$$

W.R. Casper Orthogonal Matrix Polynomials and Representation Theory

イロト イポト イヨト イヨト

э

Orthogonal Polynomials Orthogonal Matrix Polynomials

Examples

[Jacobi-type:]

$$\alpha = d(-b^2c^2 + b^2 + 1 + bc(b^2c^2 + b^2 - 1))/2 - 1$$

$$\beta = d(-b^2c^2 + b^2 + 1 - bc(b^2c^2 + b^2 - 1))/2 - 1$$

$$\begin{split} \mathfrak{D} &= \partial_x^2 (1-x^2)I - \partial_x x (\alpha+\beta+4)I \\ &+ \partial_x \left(\begin{array}{cc} x(\beta-\alpha)d - 2bc & -2b \\ 2bc^2 - 2/b & x(\beta-\alpha)d + 2bc) \end{array} \right) \\ &+ \frac{d}{2} (b^2c^2 + b^2 - 1) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \end{split}$$

$$W(x) = (1-x)^{\alpha} (1+x)^{\beta} \begin{pmatrix} b^{2} + (x-bc)^{2} & (\beta-\alpha)/b - \frac{\alpha+\beta+2}{bd}x \\ (\beta-\alpha)/b - \frac{\alpha+\beta+2}{bd}x & b^{2}c^{4} - 2c^{2} + 1/b^{2} + (x+bc)^{2} \end{pmatrix}$$

Orthogonal Polynomials Orthogonal Matrix Polynomials

Examples

[Jacobi-type:]

$$\alpha = \mathbf{a} - \mathbf{1} - \mathbf{a}^2 \mathbf{b}^2 \mathbf{c} / \mathbf{2}$$
$$\beta = \mathbf{c} - \mathbf{1} + \mathbf{a}^2 \mathbf{b}^2 \mathbf{c} / \mathbf{2}$$

$$\begin{split} \mathfrak{D} &= \partial_x^2 (1 - x^2) I - \partial_x x \left(\begin{array}{cc} \alpha + \beta + 4 & -bc \\ 0 & \alpha + \beta + 3 \end{array} \right) \\ &+ \partial_x \left(\begin{array}{cc} \beta - \alpha - ab^2c + 2 & ab^3c^2 - 3bc \\ -ab & \beta - \alpha + ab^2c - 1 \end{array} \right) - \frac{a}{2} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \end{split}$$

$$W(x) = (1-x)^{\alpha} (1+x)^{\beta} \begin{pmatrix} (\beta - \alpha - a)b^2c - (\beta + \alpha + 2 + a)cb^2x + (x+1)^2 & b(\beta - \alpha - (\alpha + \beta + 2)x) \\ b(\beta - \alpha - (\alpha + \beta + 2)x) & a^2b^2 + 1 - x \end{pmatrix}$$

イロン イロン イヨン イヨン

ъ

 $\begin{array}{l} \mbox{Orthogonal Matrix Polynomials} \\ \mbox{The Algebra } \mathcal{D}(W) \end{array}$

Orthogonal Polynomials Orthogonal Matrix Polynomials

Applications

- solutions of PDEs
 - on noncommutative separation of variables?
- polynomial approximation
 - nonlinear eigenvalue problem
 - matrix-valued special functions
- block-tridiagonal random matrices
 - asymptotic behavior of eigenvalues
- representation theory
 - representations of rank 1 Gelfand pairs
 - spherical functions
- quantum mechanics
 - Dirac equation for a central Coulomb potential

 $\begin{array}{l} \mbox{Orthogonal Matrix Polynomials} \\ \mbox{The Algebra } \mathcal{D}(W) \end{array}$

Orthogonal Polynomials Orthogonal Matrix Polynomials

New phenomena

• cone of weights

 $Cone(\mathfrak{D}) = \{W(x) : (W(x), \mathfrak{D}) \text{ is a Bochner pair}\}.$

• algebra of operators

 $\mathcal{D}(W) = \{\mathfrak{D} : \exists \Lambda(n) \text{ with } P(x, n) \cdot \mathfrak{D} = \Lambda(n)P(x, n)\}.$

- in scalar case $\mathcal{D}(r) = \mathbb{C}[\mathfrak{d}]$
- in the matrix case, D(W) can have interesting noncommutative structure!!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Orthogonal Polynomials Orthogonal Matrix Polynomials

Example

Consider the weight matrix

$$W(x) = e^{-x^2} \left(egin{array}{cc} 1 + a^2 x^2 & ax \ ax & 1 \end{array}
ight).$$

• $\mathcal{D}(W)$ contains

$$\begin{split} \mathfrak{D}_{1} &= \partial_{x}^{2} I + \partial_{x} \left(\begin{array}{cc} -2x & a \\ 0 & -2x \end{array} \right) + \left(\begin{array}{cc} -2 & 0 \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{2} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}/4 & a^{3}x/4 \\ 0 & 0 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} 0 & a/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \\ \mathfrak{D}_{3} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}x/2 & a^{3}x^{2}/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -(a^{2}+1) & a(a^{2}+2) \\ 0 & 1 \end{array} \right) + \left(\begin{array}{cc} 0 & a+2/a \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{4} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{3}x/4 & a^{2}(a^{2}x^{2}-1)/4 \\ -a^{2}/4 & a^{3}x/4 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -a^{3}/2 & a^{2}(a^{2}+2)x/2 \\ 0 & 0 \end{array} \right) + \left(\begin{array}{cc} 0 & a^{2}/2+1 \\ 1 & 0 \end{array} \right) \end{split}$$

Algebras of differential operators Properties of $\mathcal{D}(W)$ Consequences

Outline

Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Algebras determine operators!

Consider an algebra of differential operators $\ensuremath{\mathcal{A}}$ with

- A commutative
- A contains a Schrödinger operator

$$\partial_x^2 + u(x)$$

Theorem

If \mathcal{A} contains an operator of order 3 then u satisfies the stationary KdV equation

$$\frac{1}{2}u'''(x)=6uu'(x).$$

Krichever correspondence

Consider an algebra of differential operators $\ensuremath{\mathcal{A}}$ with

- A commutative
- 2 A contains operators of order m and n with gcd(m, n) = 1

$$\begin{array}{ccc} \mathcal{A} & \longleftrightarrow & \begin{array}{c} \text{algebraic curve } \mathcal{C} \\ \text{with vector bundle } \mathcal{L} \end{array} \\ \mathfrak{d} \in \mathcal{A} & \longleftrightarrow & p \in \mathcal{C} \end{array} \\ (\text{dual of) kernel of } \mathfrak{d} & \longleftrightarrow & \text{stalk of } \mathcal{L} \text{ over } p \end{array} \\ & \begin{array}{c} \begin{array}{c} \text{isospectral} \\ \text{deformations} \end{array} & \longleftrightarrow & \text{jacobian of } \mathcal{C} \end{array} \end{array}$$

イロト イポト イヨト イヨト

æ

Matrix differential operators

Consider an algebra of *matrix* differential operators A with

- requiring \mathcal{A} to be commutative is too restrictive
- generalization: \mathcal{A} is module finite over its center
- in the scalar case

 $\mathcal A$ is module finite over its center $\Leftrightarrow \mathcal A$ is commutative

• matrix case: A can be noncommutative + finite over center

Big idea

Let (W, \mathfrak{D}) be a matrix Bochner pair

- Use the structure of D(W) over its center Z(W) to learn about D
- then use \mathfrak{D} to learn about W(x)

Important steps:

- Show that $\mathcal{Z}(W)$ and $\mathcal{D}(W)$ are affine (nontrivial!)
- 2 Show that $\mathcal{D}(W)$ is finite over $\mathcal{Z}(W)$
- Study the *generic* structure of D(W) over Z(W) Rephrased: In a neighborhood of a generic point of Spec(Z(W)), what does the algebra D(W) look like?

Algebras of differential operators **Properties of** $\mathcal{D}(W)$ Consequences

Outline

Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Properties of D(W)
- Consequences

Algebras of differential operators **Properties of** $\mathcal{D}(W)$ Consequences

Operator Adjoints

Theorem (Grünbaum-Tirao)

The algebra $\mathcal{D}(W)$ has a **adjoint involution**:

$$\dagger:\mathcal{D}(W) o\mathcal{D}(W), \ \mathfrak{D}\mapsto\mathfrak{D}^{\dagger}$$

$$\langle P(x) \cdot \mathfrak{D}, Q(x) \rangle_W = \langle P(x), Q(x) \cdot \mathfrak{D}^{\dagger} \rangle_W.$$

• if W(x) is smooth

$$\mathfrak{D}^{\dagger} = W(x)\mathfrak{D}^{*}W(x)^{-1}$$
$$\left(\sum_{k}\partial_{x}^{k}A_{k}(x)\right)^{*} = \sum_{k}(-1)^{k}A_{k}(x)\partial_{x}^{k}$$

イロト 不得 とくほ とくほとう

3

New properties

- **1** $\mathcal{D}(W)$ is affine (finitely generated)
- 2 the center $\mathcal{Z}(W)$ of $\mathcal{D}(W)$ is affine
- **(a)** the ring $\mathcal{D}(W)$ is module finite over $\mathcal{Z}(W)$
- $\mathcal{Z}(W)$ is reduced and Krull dimension 1
- **(** $\mathcal{D}(W)$ is a semiprime PI-algebra of GK-dim 1
- **(** $\mathcal{D}(W)$ is generically Azumaya over $\mathcal{Z}(W)$

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_i}(\mathcal{F}_i(W)).$$

the previous isomorphism is involutive

Affineness

Algebras of differential operators **Properties of** $\mathcal{D}(W)$ Consequences

- It's not at all obvious that $\mathcal{D}(W)$ or $\mathcal{Z}(W)$ must be affine!
- $\mathcal{A} = \begin{pmatrix} \mathbb{C} & \mathbb{C}[\partial_x] \\ 0 & \mathbb{C} \end{pmatrix}$ is *commutative* and not affine

Theorem (_-Yakimov)

The algebra $\mathcal{D}(W)$ and its center $\mathcal{Z}(W)$ are both affine.

• idea: use Grünbaum's adjoint + lots of algebra

<ロ> (四) (四) (三) (三) (三)

Algebras of differential operators **Properties of** $\mathcal{D}(W)$ Consequences

Sketch of proof

We use the eigenvalue homomorphism

$$\mathcal{D}(W) \hookrightarrow M_N(\mathbb{C}[n]), \ \mathfrak{D} \mapsto \Lambda(\mathfrak{D})(n)$$

 $\Lambda(\mathfrak{D})(n)P(x,n)=P(x,n)\cdot\mathfrak{D}.$

- Existence of adjoints implies the image of D(W) has a diagonalizable basis
- ∧ embeds Z(W) into a simultaneously diagonalizable subalgebra of M_N(ℂ[n])
- Such a subalgebra is finitely generated!

イロン イ理 とく ヨン イヨン

Sketch of proof

- Finiteness of $\mathcal{D}(W)$ is even harder!
- We consider an large subalgebra of *M_N*(ℂ[*n*]) containing the image of *D*(*W*)
- We use Artin-Wedderburn and Tsen to prove it's an order (hence affine)
- The order is not commutative, but is a *centralizing* extension
- We apply Montgomery and Small's extension of Artin-Tate

Generic structure

Theorem (Posner)

A prime PI algebra is generically a central simple algebra over its center.

- our algebra $\mathcal{D}(W)$ is a PI algebra (embeds into a matrix ring)
- unfortunately it is not prime
- it is semiprime and Krull dimension 1

Theorem (_-Yakimov)

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{i=1}^{r} M_{n_i}(\mathcal{F}_i(W)).$$

イロト イポト イヨト イヨト

э

Algebras of differential operators Properties of $\mathcal{D}(W)$ Consequences

Outline

Orthogonal Matrix Polynomials

- Orthogonal Polynomials
- Orthogonal Matrix Polynomials

2 The Algebra $\mathcal{D}(W)$

- Algebras of differential operators
- Properties of $\mathcal{D}(W)$
- Consequences

Algebras of differential operators Properties of $\mathcal{D}(W)$ Consequences

Full weights

Definition

The **module rank** of $\mathcal{D}(W)$ is $n_1 + n_2 + \cdots + n_r$ from the previous theorem. If the rank is *N*, we say that W(x) is **full**.

Theorem (_-Yakimov)

If W(x) is full, then W(x) is a noncommutative bispectral Darboux transformation of a direct sum of classical weights.

$$W(x) = T(x) diag(r_1(x), r_2(x), ..., r_n(x)) T(x)^*.$$

 $C(n)P(x,n) = diag(p_1(x,n), p_2(x,n), \ldots, p_N(x,n)) \cdot \mathfrak{U}.$

Algebras of differential operators Properties of $\mathcal{D}(W)$ Consequences

Sketch of proof

• fullness means we can choose nonzero $\mathfrak{V}_1, \ldots, \mathfrak{V}_N \in \mathcal{D}(W)$ with

$$\mathfrak{V}_i\mathfrak{V}_j=\mathbf{0}, \ i\neq j.$$

- can take the \mathfrak{V}_i to be *W*-symmetric
- define modules

$$\mathcal{M}_i = \{ \vec{\mathfrak{w}} \in \Omega(\boldsymbol{x})^{\oplus N} : \vec{\mathfrak{w}}^T \mathfrak{V}_j = \vec{0}^T \ \forall j \neq i \}.$$

Ω(x), the algebra of differential operators with rational coefficients, is a noncommutative PID:

$$\mathcal{M}_i = \Omega(x)\vec{\mathfrak{u}_i}$$

Algebras of differential operators Properties of $\mathcal{D}(W)$ Consequences

Sketch of proof

• using \mathcal{M}_i , define a matrix differential operator

$$\mathfrak{U} = [\mathfrak{u}_1^{-} \mathfrak{u}_2^{-} \ldots \mathfrak{u}_N^{-}]^T, \quad \mathfrak{u}_i^{-} = \sum_{j=0}^{\ell_i} \partial_x^j \mathfrak{u}_{ji}(x)$$

$$U(x) = [\vec{u}_{\ell_1 1}(x) \ \vec{u}_{\ell_2 2}(x) \ \dots \ \vec{u}_{\ell_N N}(x)]^T$$

Then

$$\begin{split} R(x) &:= U(x)W(x)U(x)^* = \text{diag}(r_1(x), \dots, r_N(x)) \text{ is diagonal.} \\ & \mathfrak{U}W(x)\mathfrak{U}^*R(x)^{-1} = \text{diag}(\mathfrak{d}_1, \mathfrak{d}_2, \dots, \mathfrak{d}_N). \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Sketch of proof

- $p_i(x, n)$ the sequence of orthogonal polys for $r_i(x)$
- then sequence of matrix-valued functions

$$P(x,n) = \text{diag}(p_1(x,n), p_2(x,n), \dots, p_N(x,n)) \cdot \mathfrak{U}$$

satisfies

$$P(x,n) \cdot W(x)\mathfrak{U}^*R(x)^{-1}\mathfrak{U} = \operatorname{diag}(\lambda_1(n),\ldots,\lambda_N(n))P(x,n).$$
$$\int P(x,m)W(x)P(x,n)^*dx = 0, \quad m \neq n.$$

Algebras of differential operators Properties of $\mathcal{D}(W)$ Consequences

Example

Consider the weight matrix

$$W(x)=e^{-x^2}\left(egin{array}{cc} 1+a^2x^2&ax\ax&1\end{array}
ight).$$

• $\mathcal{D}(W)$ contains

$$\begin{split} \mathfrak{D}_{1} &= \partial_{x}^{2} I + \partial_{x} \left(\begin{array}{cc} -2x & a \\ 0 & -2x \end{array} \right) + \left(\begin{array}{cc} -2 & 0 \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{2} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}/4 & a^{3}x/4 \\ 0 & 0 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} 0 & a/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \\ \mathfrak{D}_{3} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{2}x/2 & a^{3}x^{2}/2 \\ -a/2 & a^{2}x/2 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -(a^{2}+1) & a(a^{2}+2) \\ 0 & 1 \end{array} \right) + \left(\begin{array}{cc} 0 & a+2/a \\ 0 & 0 \end{array} \right) \\ \mathfrak{D}_{4} &= \partial_{x}^{2} \left(\begin{array}{cc} -a^{3}x/4 & a^{2}(a^{2}x^{2}-1)/4 \\ -a^{2}/4 & a^{3}x/4 \end{array} \right) + \partial_{x} \left(\begin{array}{cc} -a^{3}/2 & a^{2}(a^{2}+2)x/2 \\ 0 & 0 \end{array} \right) + \left(\begin{array}{cc} 0 & a^{2}/2+1 \\ 1 & 0 \end{array} \right) \end{split}$$

 $\begin{array}{c} \mbox{Orthogonal Matrix Polynomials} \\ \mbox{The Algebra } \mathcal{D}(W) \end{array} \qquad \begin{array}{c} \mbox{Algebras of differential operators} \\ \mbox{Properties of } \mathcal{D}(W) \\ \mbox{Consequences} \end{array}$

Example

• we have
$$\mathfrak{V}_1\mathfrak{V}_2 = 0$$
 for

$$\mathfrak{V}_1 = \mathfrak{D}_2, \ \mathfrak{V}_2 = a^2 \mathfrak{D}_1 + 4 \mathfrak{D}_2 - 4I$$

• the modules are

$$\mathcal{M}_1 = \Omega(x) \begin{pmatrix} \partial_x a/2 \\ -\partial_x a^2 x/2 - 1 \end{pmatrix}, \quad \mathcal{M}_2 = \Omega(x) \begin{pmatrix} -1 \\ \partial_x a/2 \end{pmatrix}$$

therefore

$$\mathfrak{U} = \left(\begin{array}{cc} \partial_x a/2 & -\partial_x a^2 x/2 - 1\\ -1 & \partial_x a/2 \end{array}\right), \ U(x) = \left(\begin{array}{cc} a/2 & -a^2 x/2\\ 0 & a/2 \end{array}\right)$$

イロン イロン イヨン イヨン

ъ

Algebras of differential operators Properties of $\mathcal{D}(W)$ Consequences

• the weight satisfies

$$R(x) = U(x)W(x)U(x)^* = (a^2/4)e^{-x^2}I$$

- so W(x) is a noncommutative bispectral Darboux transformation of the Hermite weight
- orthogonal matrix polynomials for W(x) are given in terms of Hermite polynomials by

$$P(x, n) := p_{herm}(x, n)I \cdot \mathfrak{U},$$

Thanks for listening!

- New paper: https://arxiv.org/abs/1803.04405
- Bochner, Salomon. Über Sturm-Liouvillesche Polynomsysteme, Mathematische Zeitschrift 1929.
- Kreĭn, M. Infinite *J*-matrices and the matrix-moment problem, DokladyAkad. Nauk SSSR 1949
- Geiger, Joel and Horozov, Emil and Yakimov, Milen. Noncommutative bispectral Darboux transformations, Transactions AMS 2017
- Grünbaum, Alberto and Tirao, Juan. The Algebra of Differential Operators Associated to a Weight Matrix. J. Integr. equ. oper. theory (2007) 58: 449.