Fourier Algebras

W.R. Casper

Department of Mathematics Louisiana State University

December 18, 2019

Outline

- Fourier Algebras
 - Bispectral Functions
 - Fourier Algebras
- Applications of Fourier Algebras
 - Prolate Spheroidal Operators
 - The Matrix Bochner Problem

Outline

- Fourier Algebras
 - Bispectral Functions
 - Fourier Algebras
- Applications of Fourier Algebras
 - Prolate Spheroidal Operators
 - The Matrix Bochner Problem

Time and Band-limiting

When sending a signal to a friend there are two natural limitations:

- the range of frequencies that you can communicate, and
- the length of time you can communicate for

Thus a basic communication amounts to

$$T(f(t)) = \mathbf{1}_{[0, au]}(t)\mathcal{F}^*(\overbrace{\chi_{[-\kappa,\kappa]}(k)}^{\text{limits frequencies}}(\mathcal{F}(\overbrace{\mathbf{1}_{[0, au]}(t)}^{\text{limits times}}f(t)))$$
 $= \mathbf{1}_{[0, au]}(t)\int_0^{ au} 2K(s,t)f(s)ds,$

where \mathcal{F} is the Fourier transform an K(s, t) is the sinc kernel

$$K(s,t) = \frac{\sin \kappa(s-t)}{s-t}.$$

Time and Band-limiting

Problem (Shannon 1940's)

What is the best quality of data that can be sent over a time period $[0,\tau]$ with a limited frequency range $[-\kappa,\kappa]$? **Mathematically**, what are the eigenfunctions of the time and band-limiting operator T?

Idea (Landau, Pollak, Slepian 1960's)

The following differential operator commutes with T

$$D(t, \partial_t) = \partial_t(\tau^2 - t^2)\partial_t - \kappa^2 t^2.$$

Eigenfunctions = solutions of differential equation!

Prolate-spheroidal Operators

Definition

An integral operator

$$T: f(x) \mapsto \int K(x,y)f(y)dy$$

which commutes with a nonconstant differential operator $D(x, \partial_x)$ is called **prolate-spheroidal**.

- Tracy and Widom (1990's): other prolate-spheroidal operators coming from random matrix theory
- Duistermaat and Grunbaum: known prolate-spheroidal operators are related to bispectral functions

Bispectral Functions

Definition

Let $S_x \subseteq \mathcal{R}_x$ and $S_z \subseteq \mathcal{R}_z$ be algebras, and \mathcal{M} be a $\mathcal{R}_x, \mathcal{R}_z$ -bimodule. Then $\Psi \in \mathcal{M}$ is **bispectral** if $\exists L_x \in \mathcal{R}_x$, $R_z \in \mathcal{R}_z$, $F_x \in \mathcal{S}_x$, and $G_z \in \mathcal{S}_z$ sat.

$$L_x \cdot \Psi = \Psi \cdot G_z$$
 and $\Psi \cdot R_z = F_x \cdot \Psi$.

Classical case:

- $S_X = \mathbb{C}[X], \mathcal{R}_X = \mathbb{C}(X)[\partial_X]$
- $S_z = \mathbb{C}[z], \, \mathcal{R}_z = \mathbb{C}(z)[\partial_z]^{op}$
- $\mathcal{M} = \text{holomorphic functions on } \mathbb{C} \times \mathbb{C}$

Examples of Bispectral Functions

• The exponential function $\psi(x,z) = e^{xz}$ is bispectral since

$$\partial_x \cdot \psi(x, z) = \psi(x, z)z$$
 and $\psi(x, z) \cdot \partial_z = x\psi(x, z)$.

• The Airy function $\psi(x,z) = \text{Ai}(x+z)$ is bispectral since

$$(\partial_x^2 - x) \cdot \psi(x, z) = \psi(x, z)z$$
 and $\psi(x, z) \cdot (\partial_z^2 - z) = x\psi(x, z)$.

• The function $\psi(x,z) = \sqrt{xz} K_{\nu+1/2}(xz)$, for K_{ν} the modified Bessel function of the second kind, is bispectral since

$$\left(\partial_x^2 - \frac{\nu(\nu+1)}{x^2}\right) \cdot \psi(x,z) = \psi(x,z)z^2 \ \text{ and } \ \psi(x,z) \cdot \left(\partial_z^2 - \frac{\nu(\nu+1)}{z^2}\right) = x^2\psi(x,z).$$

Nonclassical Examples

$$\Psi(x,z) = e^{xz} \left[I + \begin{pmatrix} -1/xz & 1/x^2z \\ 0 & -1/xz \end{pmatrix} \right]$$

Then $\Psi(x,z)$ is bispectral since

$$\left[\partial_x^2 I + \left(\begin{array}{cc} -2/x^2 & 4/x^3 \\ 0 & -2/x^2 \end{array} \right) \right] \cdot \Psi(x,z) = \Psi(x,z)z^2.$$

$$\Psi(x,z)\cdot \left[\partial_z^3 I - 3\partial_z \frac{1}{z^2} I + \left(\begin{array}{cc} 3/z^3 & 3/z^2 \\ 0 & 3/z^3 \end{array}\right)\right] = x^3 \Psi(x,z).$$

Nonclassical Examples

• Let P(n, x) be a solution of the **matrix Bochner problem**: a sequence of $N \times N$ monic orthogonal matrix polynomials satisfying the matrix-valued differential equation

$$\Lambda(n)P(n,x) = P''(n,x)A_2(x) + P'(n,x)A_1(x) + P(n,x)A_0(x)$$

for some sequence of $N \times N$ matrices $\Lambda(0), \Lambda(1), \ldots$ Then P(n, x) is bispectral since it also satisfies a three-term recursion relation

$$P(n+1,x) + B(n)P(n,x) + C(n)P(n-1,x) = P(n,x)x.$$

Outline

- Fourier Algebras
 - Bispectral Functions
 - Fourier Algebras
- Applications of Fourier Algebras
 - Prolate Spheroidal Operators
 - The Matrix Bochner Problem

Bispectral Algebras

Definition

Let Ψ be bispectral. The left and right bispectral algebras $\mathcal{B}_x(\Psi)$ and $\mathcal{B}_z(\Psi)$ are

$$\mathcal{B}_{x}(\Psi) = \{L_{x} \in \mathcal{R}_{x}: \ \exists \ \textit{G}_{z} \in \mathcal{S}_{z}, \ L_{x} \cdot \Psi = \Psi \cdot \textit{S}_{z}\}.$$

$$\mathcal{B}_{z}(\Psi) = \{ R_{z} \in \mathcal{R}_{z} : \exists F_{x} \in \mathcal{S}_{x}, F_{x} \cdot \Psi = \Psi \cdot R_{z} \}.$$

- in the classical situation, $\mathcal{B}_{x}(\Psi)$ is commutative
- Wilson's insight: classify bispectral functions according to their (left) bispectral algebras.

Fourier Algebras

Definition

Let Ψ be bispectral. The left and right Fourier algebras $\mathcal{F}_x(\Psi)$ and $\mathcal{F}_z(\Psi)$ are

$$\mathcal{F}_{x}(\Psi) = \{L_{x} \in \mathcal{R}_{x}: \exists R_{z} \in \mathcal{R}_{z}, L_{x} \cdot \Psi = \Psi \cdot R_{z}\}.$$

$$\mathcal{F}_{z}(\Psi) = \{R_{z} \in \mathcal{R}_{z} : \exists L_{x} \in \mathcal{R}_{x}, L_{x} \cdot \Psi = \Psi \cdot R_{z}\}.$$

• if Ψ has no left or right annihilator, the algebras $\mathcal{F}_x(\Psi)$ and $\mathcal{F}_z(\Psi)$ are isomorphic via the **generalized Fourier map**:

$$b_{\Psi}: L_x \mapsto R_z$$
 such that $L_x \cdot \Psi = \Psi \cdot R_z$.

Terminology

The terminology comes from the example $\psi(x, z) = e^{xz}$.

Example

Consider the exponential bispectral function $\psi(x,z)=e^{xz}$. The left and right Fourier algebras are:

$$\mathcal{F}_{\mathsf{X}}(\psi) = \mathbb{C}[\mathsf{X}][\partial_{\mathsf{X}}],$$

$$\mathcal{F}_{z}(\psi) = \mathbb{C}[z][\partial_{z}]^{op},$$

and the generalized Fourier map b_{ψ} is exactly the Fourier map!

$$b_{\psi}: \sum_{m,n} a_{mn} x^m \partial_x^n \mapsto \sum_{mn} a_{mn} \partial_z^m z^n.$$

Bispectral Darboux transformations

Take $F, \widetilde{F} \in \mathcal{S}_{x}, P, \widetilde{P} \in \mathcal{F}_{x}(\Psi)$ satisfying

$$\widetilde{P}\widetilde{F}^{-1}F^{-1}P\cdot\Psi=\Psi\widetilde{G}G.$$

This automatically means

$$\Psi \cdot b_{\Psi}(P)G^{-1}\widetilde{G}^{-1}b_{\Psi}(\widetilde{P}) = F\widetilde{F}\Psi.$$

The bispectral Darboux transformation $\widetilde{\Psi}$ is

$$\widetilde{\Psi} = F^{-1}P \cdot \Psi G^{-1}$$
.

These are Darboux transformations preserving bispectrality!

$$F^{-1}P\widetilde{P}\widetilde{F}^{-1}\cdot\widetilde{\Psi}=\widetilde{\Psi}\widetilde{G}G$$

$$\widetilde{\Psi}\cdot\widetilde{G}^{-1}b_{\Psi}(\widetilde{P})b_{\Psi}(P)G^{-1}=F\widetilde{F}\widetilde{\Psi}$$

Geometric Interpretation of Ψ , $\mathcal{B}_{x}(\Psi)$, $\mathcal{F}_{x}(\Psi)$

bispectral operators generate a spectral curve

$$\mathcal{B}_{x}(\Psi) \iff \text{compact Riemann surface } X$$

eigenfunctions define a vector bundle

$$\Psi \iff \text{vector bundle } \mathcal{V} \text{ on } X$$

the Fourier algebra is intrinsic

$$\mathcal{F}_{\chi}(\Psi) \iff \text{differential operators on } \mathcal{V}.$$

In the classical case, this is literal!

Example

Consider the bispectral function $\psi(x, z) = e^{xz} \left(1 - \frac{1}{xz}\right)$.

In particular

$$L(x,\partial_x)\cdot\psi(x,z) = \psi(x,z)z^2 \text{ and } \widetilde{L}(x,\partial_x)\cdot\psi(x,z) = \psi(x,z)z^3.$$

$$x^2\psi(x,z) = \psi(x,z)\cdot L(z,\partial_z) \text{ and } x^3\psi(x,z) = \psi(x,z)\cdot \widetilde{L}(z,\partial_z).$$

$$L(x,\partial_x) = \partial_x^2 - \frac{2}{x^2}, \ \widetilde{L}(x,\partial_x) = \partial_x^3 - \frac{3}{2x^2}\partial_x - \frac{3}{2x^3}.$$

The left and right bispectral algebras are given by

$$B_x(\psi) = \mathbb{C}[L(x,\partial_x),\widetilde{L}(x,\partial_x)], \ B_z(\psi) = \mathbb{C}[L(z,\partial_z),\widetilde{L}(z,\partial_z)],$$

Example continued

- The Fourier algebra $\mathcal{F}_x(\psi)$ is generated by $L(x, \partial_x)$, $\widetilde{L}(x, \partial_x)$, x^2 , and x^3
- Since $(z^2)^3 = (z^3)^2$, the generalize Fourier map says

$$L(x, \partial_x)^3 = \widetilde{L}(x, \partial_x)^2,$$

- spec $B_x(\psi) = \operatorname{spec} \mathbb{C}[x^2, x^3]$ is a cuspidal cubic curve
- $\mathcal{F}_{x}(\psi)$ is isomorphic to the algebra of differential operators on this curve

$$\mathcal{F}_{x}(\psi) = \frac{1}{x^{2}} \{ D(x, \partial_{x}) : D(x, \partial_{x}) \cdot \mathbb{C}[x^{2}, x^{3}] \subseteq \mathbb{C}[x^{2}, x^{3}] \} x^{2}.$$

Outline

- Fourier Algebras
 - Bispectral Functions
 - Fourier Algebras
- Applications of Fourier Algebras
 - Prolate Spheroidal Operators
 - The Matrix Bochner Problem

Prolate Spheroidal Operators

Conjecture (Duistermaat, Grünbaum 1980's)

Let Γ_1 , Γ_2 be oriented paths in \mathbb{C} . For sufficiently nice bispectral functions $\psi(x,z)$, the integral operator T_{ψ}

$$T_{\psi}: f(z) \mapsto \int_{\Gamma_2} K(z,w)f(w)dw, \quad K_{\psi}(z,w) = \int_{\Gamma_1} \psi(x,z)\psi(x,w)dx$$

is prolate-spheroidal.

Example

Consider the bispectral function $\psi(x,z)=e^{ixz}$. For $\Gamma_1=[-\kappa,\kappa]$ and $\Gamma_2=[0,\tau]$, the operator T_ψ is the time and band-limiting operator.

Prolate-spheroidal operators

Theorem (Casper, Yakimov 2019)

Let $\psi(x,z)$ be a self-adjoint bispectral meromorphic function of rank 1 or 2 and let Γ_1, Γ_2 be sufficiently nice paths in $\mathbb C$. Then there exists a nonconstant, self-adjoint operator $R(z,\partial_z)\in \mathcal F_z(\psi)$ commuting with T_ψ . In particular T_ψ is prolate-spheroidal.

- A similar statement holds for matrix-valued time and band-limiting operators
- Idea for proof: show that $\mathcal{F}_z(\psi)$ is large.

Prolate Spheroidal Operators

Bifiltration:

$$\mathcal{F}_{z,\operatorname{sym}}^{\ell,m}(\psi) = \{R(z,\partial_z) \in \mathcal{F}_{z,\operatorname{sym}}(\psi) : \operatorname{ord}(R) \leq \ell, \ \operatorname{ord}(b_{\psi}^{-1}(R)) \leq m\}.$$

Theorem (Casper, Yakimov 2019)

For $\psi(x, z)$ symmetric of rank 1 or 2,

$$\dim \mathcal{F}_{z,sym}^{2\ell,2m}(\psi) \geq (\ell+1)(m+1) - const.$$

• can find $R(z, \partial_z) \in \mathcal{F}_{z, \text{sym}}(\psi)$ with

$$\int_{\Gamma_1} f(z) \cdot R(z, \partial_z) g(z) dz = \int_{\Gamma_1} g(z) \cdot R(z, \partial_z) f(z) dz$$

$$\int_{\Gamma_2} g(x) b_{\psi}^{-1}(R)(x,\partial_x) \cdot f(x) dx = \int_{\Gamma_2} f(x) b_{\psi}^{-1}(R)(x,\partial_x) \cdot g(x) dx$$

Why the Fourier algebra?

$$T_{\psi}(f(z) \cdot R(z, \partial_{z})) = \int_{\Gamma_{1}} \left(\int_{\Gamma_{2}} f(w) \cdot R(w, \partial_{w}) \psi(x, w) \right) dw \psi(x, z) dx$$

$$= \int_{\Gamma_{1}} \left(\int_{\Gamma_{2}} f(w) (\psi(x, w) \cdot R(w, \partial_{w})) \right) dw \psi(x, z) dx$$

$$= \int_{\Gamma_{2}} f(w) \left(\int_{\Gamma_{1}} b_{\psi}^{-1}(R)(x, \partial_{x}) \cdot \psi(x, w) \psi(x, z) dx \right) dw$$

$$= \int_{\Gamma_{2}} f(w) \left(\int_{\Gamma_{1}} \psi(x, w) b_{\psi}^{-1}(R)(x, \partial_{x}) \cdot \psi(x, z) dx \right) dw$$

$$= \int_{\Gamma_{2}} f(w) \left(\int_{\Gamma_{1}} \psi(x, w) \cdot \psi(x, z) \cdot R(z, \partial_{z}) dx \right) dw$$

$$= T_{\psi}(f(z)) \cdot R(z, \partial_{z}).$$

Outline

- Fourier Algebras
 - Bispectral Functions
 - Fourier Algebras
- Applications of Fourier Algebras
 - Prolate Spheroidal Operators
 - The Matrix Bochner Problem

Orthogonal Matrix Polynomials

Definition

A **weight matrix** W(x) on \mathbb{R} is an $N \times N$ Hermitian matrix valued function which is positive-definite on an interval (a, b), identically zero elsewhere, and has finite moments.

defines a matrix-valued inner product:

$$\langle F,G\rangle_W=\int_{\mathbb{R}}F(x)W(x)G(x)^*dx.$$

• unique sequence of matrix-valued polynomials P(0, x), P(1, x), ... with P(n, x) monic of degree n and

$$\langle P(m,x), P(n,x)\rangle_W = 0I, m \neq n.$$

The Matrix Bochner Problem

Problem (Matrix Bochner Problem)

Find the weight matrices W(x) whose polynomials P(n, x) are eigenfunctions of a second-order matrix differential operator

$$P(n,x)\cdot R(x,\partial_x) = \Lambda(n)P(n,x), \ R(x,\partial_x) = \partial_x^2 A_2(x) + \partial_x A_1(x) + A_0(x).$$

- solved by Bochner in scalar case N = 1: classical orthogonal polynomials
- matrix-valued case is much harder!

Fourier Algebra

The left and right Fourier algebras are characterized by

$$\mathcal{F}_n(P) = \{ \mathscr{M} \text{ matrix shift op } : \exists k > 0, \text{ ad}_{\mathscr{L}}^{k+1}(\mathscr{M}) = 0I \}.$$

$$\mathcal{F}_{x}(P) = \{R(x,\partial_{x}) \in M_{N}(\mathbb{C}[x][\partial_{x}]) : \underset{R^{\dagger} \in M_{N}(\mathbb{C}[x][\partial_{x}])}{\text{R is } W\text{-adjointable and}}\}.$$

Here, \mathcal{L} is the shift operator

$$\mathscr{L} \cdot P(n,x) = P(n+1,x) + B(n)P(n,x) + C(n)P(n-1,x)$$

defining the three-term recursion relation

$$\mathscr{L} \cdot P(n, x) = P(n, x)x.$$

Bispectral Darboux Transformations

Definition

We say that $\widetilde{W}(x)$ is a **bispectral Darboux transformation** of W(x) if

$$\widetilde{P}(n,x) = C(n)^{-1}P(n,x) \cdot U(x,\partial_x)Q(x)^{-1}$$

$$P(n,x) = \widetilde{C}(n)^{-1}\widetilde{P}(n,x) \cdot \widetilde{Q}(x)^{-1}\widetilde{U}(x,\partial_x)$$

for $U(x, \partial_x)$, $\widetilde{U}(x, \partial_x) \in \mathcal{F}_x(P)$ for some matrix-valued rational functions Q(x), $\widetilde{Q}(x)$, C(n), $\widetilde{C}(n)$.

Note:

$$P(n,x) \cdot U(x,\partial_x)Q(x)^{-1}\widetilde{Q}(x)^{-1}\widetilde{U}(x,\partial_x) = C(n)\widetilde{C}(n)P(n,x).$$

Fourier Algebra

The right bispectral algebra D(W) is

$$\mathcal{D}(W) = \{R(x, \partial_x) : \exists \Lambda(n), \ P(n, x) \cdot R(x, \partial_x) = \Lambda(n)P(x, n)\}.$$

This is not commutative, but is generically a product of matrix algebras:

$$\mathcal{D}(W) \otimes_{\mathcal{Z}(W)} \mathcal{F}(W) \cong \bigoplus_{j=1}^r M_{n_j}(\mathcal{F}_j(W)).$$

- $\mathcal{Z}(W)$ is the center of $\mathcal{D}(W)$
- $\mathcal{F}(W) = \bigoplus_{j=1}^{r} \mathcal{F}_{j}(W)$ ring of fractions of $\mathcal{Z}(W)$

If $n_1 + \cdots + n_r = N$, W is called **full**.

Matrix Bochner Problem

Theorem (Casper, Yakimov 2018)

Let W(x) be an $N \times N$ weight matrix whose monic orthogonal matrix polynomials P(n,x) satisfy

$$\Lambda(n)P(n,x) = P(n,x)''A_2(x) + P(n,x)'A_1(x) + P(n,x)A_0,$$

with $W(x)A_2(x)$ symmetric, positive-definite on supp(W). If W(x) is full, W(x) is a bispectral Darboux transformation of

$$R(x) := r_1(x) \oplus \cdots \oplus r_N(x)$$

$$W(x) = T(x)R(x)T(x)^*, T(x) \in M_N(\mathbb{C}(x)).$$

$$P(n,x) = C(n)^{-1}(p_1(n,x) \oplus \cdots \oplus p_N(n,x)) \cdot U(x,\partial_x).$$

Thank you!

Papers of interest:

- "Reflective prolate-spheroidal operators and the KP/KdV equations." 2019 Proc. Natl. Acad. of Sci. USA, arXiv preprint 1909.01448
- "Integral operators, bispectrality and growth of Fourier algebras." 2019 J. Reine Angew. Math, arXiv preprint 1807.09314
- "The Matrix Bochner Problem" 2018 arXiv preprint 1803.04405